Fungicidal activity against Monilinia laxa isolate MLX1 assessed as mycelial growth at 0.1 ug/ml at 25 degC after 4 days
|
Monilinia laxa
|
21.82
%
|
|
Journal : Crop Protection
Title : PCR-RFLP detection of the E198A mutation conferring resistance to benzimidazoles in field isolates of Monilinia laxa from Greece
Year : 2012
Volume : 39
First Page : 11
Last Page : 17
Authors : Malandrakis AA, Markoglou AN, Ziogas BN.
Abstract : Sensitivity to benzimidazoles in isolates of the brown rot pathogen (Monilinia laxa) collected from stone fruit in central and northern Greece was evaluated and the molecular basis for resistance was investigated. M. laxa isolates were classified as benzimidazole – sensitive (S) or highly resistant (HR) based on their sensitivity profiles to carbendazim. Thirty seven percent of the isolates belonged to the HR phenotype, carried no apparent fitness penalties and exhibited resistance factor values (based on EC50 values) greater than 500. Highly resistant isolates were also less sensitive to the benzimidazoles benomyl and thiophanate-methyl but more sensitive to the N-phenylcarbamate diethofencarb and the benzamide zoxamide compared to isolates belonging to the S phenotype. Fungitoxicity tests with fungicides belonging to other chemical classes revealed no cross resistance relationships between benzimidazoles and the dicarboximide iprodione, the phenylpyrrole fludioxonil, the hydroxyanilide fenhexamid, the carboxamide boscalid, the triazole tebuconazole and the strobilurin-type fungicide pyraclostrobin, indicating that a target site modification is probably responsible for the resistant phenotypes observed. Comparison of the β-tubulin gene DNA sequences between resistant and sensitive isolates revealed a point mutation resulting from the E198A substitution of the corresponding protein in all HR isolates tested. An Eco31I restriction site in the β-tubulin gene, which was destroyed in HR M. laxa isolates, allowed the development of a PCR-RFLP diagnostic for the detection of the E198A resistance mutation.
Fungicidal activity against Monilinia laxa isolate MLP4 assessed as mycelial growth at 0.1 ug/ml at 25 degC after 4 days
|
Monilinia laxa
|
45.83
%
|
|
Journal : Crop Protection
Title : PCR-RFLP detection of the E198A mutation conferring resistance to benzimidazoles in field isolates of Monilinia laxa from Greece
Year : 2012
Volume : 39
First Page : 11
Last Page : 17
Authors : Malandrakis AA, Markoglou AN, Ziogas BN.
Abstract : Sensitivity to benzimidazoles in isolates of the brown rot pathogen (Monilinia laxa) collected from stone fruit in central and northern Greece was evaluated and the molecular basis for resistance was investigated. M. laxa isolates were classified as benzimidazole – sensitive (S) or highly resistant (HR) based on their sensitivity profiles to carbendazim. Thirty seven percent of the isolates belonged to the HR phenotype, carried no apparent fitness penalties and exhibited resistance factor values (based on EC50 values) greater than 500. Highly resistant isolates were also less sensitive to the benzimidazoles benomyl and thiophanate-methyl but more sensitive to the N-phenylcarbamate diethofencarb and the benzamide zoxamide compared to isolates belonging to the S phenotype. Fungitoxicity tests with fungicides belonging to other chemical classes revealed no cross resistance relationships between benzimidazoles and the dicarboximide iprodione, the phenylpyrrole fludioxonil, the hydroxyanilide fenhexamid, the carboxamide boscalid, the triazole tebuconazole and the strobilurin-type fungicide pyraclostrobin, indicating that a target site modification is probably responsible for the resistant phenotypes observed. Comparison of the β-tubulin gene DNA sequences between resistant and sensitive isolates revealed a point mutation resulting from the E198A substitution of the corresponding protein in all HR isolates tested. An Eco31I restriction site in the β-tubulin gene, which was destroyed in HR M. laxa isolates, allowed the development of a PCR-RFLP diagnostic for the detection of the E198A resistance mutation.
Fungicidal activity against Monilinia laxa isolate MLK12 assessed as mycelial growth at 0.1 ug/ml at 25 degC after 4 days
|
Monilinia laxa
|
60.05
%
|
|
Journal : Crop Protection
Title : PCR-RFLP detection of the E198A mutation conferring resistance to benzimidazoles in field isolates of Monilinia laxa from Greece
Year : 2012
Volume : 39
First Page : 11
Last Page : 17
Authors : Malandrakis AA, Markoglou AN, Ziogas BN.
Abstract : Sensitivity to benzimidazoles in isolates of the brown rot pathogen (Monilinia laxa) collected from stone fruit in central and northern Greece was evaluated and the molecular basis for resistance was investigated. M. laxa isolates were classified as benzimidazole – sensitive (S) or highly resistant (HR) based on their sensitivity profiles to carbendazim. Thirty seven percent of the isolates belonged to the HR phenotype, carried no apparent fitness penalties and exhibited resistance factor values (based on EC50 values) greater than 500. Highly resistant isolates were also less sensitive to the benzimidazoles benomyl and thiophanate-methyl but more sensitive to the N-phenylcarbamate diethofencarb and the benzamide zoxamide compared to isolates belonging to the S phenotype. Fungitoxicity tests with fungicides belonging to other chemical classes revealed no cross resistance relationships between benzimidazoles and the dicarboximide iprodione, the phenylpyrrole fludioxonil, the hydroxyanilide fenhexamid, the carboxamide boscalid, the triazole tebuconazole and the strobilurin-type fungicide pyraclostrobin, indicating that a target site modification is probably responsible for the resistant phenotypes observed. Comparison of the β-tubulin gene DNA sequences between resistant and sensitive isolates revealed a point mutation resulting from the E198A substitution of the corresponding protein in all HR isolates tested. An Eco31I restriction site in the β-tubulin gene, which was destroyed in HR M. laxa isolates, allowed the development of a PCR-RFLP diagnostic for the detection of the E198A resistance mutation.
Fungicidal activity against Monilinia laxa isolate MLK1 assessed as mycelial growth at 0.1 ug/ml at 25 degC after 4 days
|
Monilinia laxa
|
17.65
%
|
|
Journal : Crop Protection
Title : PCR-RFLP detection of the E198A mutation conferring resistance to benzimidazoles in field isolates of Monilinia laxa from Greece
Year : 2012
Volume : 39
First Page : 11
Last Page : 17
Authors : Malandrakis AA, Markoglou AN, Ziogas BN.
Abstract : Sensitivity to benzimidazoles in isolates of the brown rot pathogen (Monilinia laxa) collected from stone fruit in central and northern Greece was evaluated and the molecular basis for resistance was investigated. M. laxa isolates were classified as benzimidazole – sensitive (S) or highly resistant (HR) based on their sensitivity profiles to carbendazim. Thirty seven percent of the isolates belonged to the HR phenotype, carried no apparent fitness penalties and exhibited resistance factor values (based on EC50 values) greater than 500. Highly resistant isolates were also less sensitive to the benzimidazoles benomyl and thiophanate-methyl but more sensitive to the N-phenylcarbamate diethofencarb and the benzamide zoxamide compared to isolates belonging to the S phenotype. Fungitoxicity tests with fungicides belonging to other chemical classes revealed no cross resistance relationships between benzimidazoles and the dicarboximide iprodione, the phenylpyrrole fludioxonil, the hydroxyanilide fenhexamid, the carboxamide boscalid, the triazole tebuconazole and the strobilurin-type fungicide pyraclostrobin, indicating that a target site modification is probably responsible for the resistant phenotypes observed. Comparison of the β-tubulin gene DNA sequences between resistant and sensitive isolates revealed a point mutation resulting from the E198A substitution of the corresponding protein in all HR isolates tested. An Eco31I restriction site in the β-tubulin gene, which was destroyed in HR M. laxa isolates, allowed the development of a PCR-RFLP diagnostic for the detection of the E198A resistance mutation.
Fungicidal activity against Monilinia laxa isolate MLC2 assessed as mycelial growth at 0.1 ug/ml at 25 degC after 4 days
|
Monilinia laxa
|
50.35
%
|
|
Journal : Crop Protection
Title : PCR-RFLP detection of the E198A mutation conferring resistance to benzimidazoles in field isolates of Monilinia laxa from Greece
Year : 2012
Volume : 39
First Page : 11
Last Page : 17
Authors : Malandrakis AA, Markoglou AN, Ziogas BN.
Abstract : Sensitivity to benzimidazoles in isolates of the brown rot pathogen (Monilinia laxa) collected from stone fruit in central and northern Greece was evaluated and the molecular basis for resistance was investigated. M. laxa isolates were classified as benzimidazole – sensitive (S) or highly resistant (HR) based on their sensitivity profiles to carbendazim. Thirty seven percent of the isolates belonged to the HR phenotype, carried no apparent fitness penalties and exhibited resistance factor values (based on EC50 values) greater than 500. Highly resistant isolates were also less sensitive to the benzimidazoles benomyl and thiophanate-methyl but more sensitive to the N-phenylcarbamate diethofencarb and the benzamide zoxamide compared to isolates belonging to the S phenotype. Fungitoxicity tests with fungicides belonging to other chemical classes revealed no cross resistance relationships between benzimidazoles and the dicarboximide iprodione, the phenylpyrrole fludioxonil, the hydroxyanilide fenhexamid, the carboxamide boscalid, the triazole tebuconazole and the strobilurin-type fungicide pyraclostrobin, indicating that a target site modification is probably responsible for the resistant phenotypes observed. Comparison of the β-tubulin gene DNA sequences between resistant and sensitive isolates revealed a point mutation resulting from the E198A substitution of the corresponding protein in all HR isolates tested. An Eco31I restriction site in the β-tubulin gene, which was destroyed in HR M. laxa isolates, allowed the development of a PCR-RFLP diagnostic for the detection of the E198A resistance mutation.
Fungicidal activity against Monilinia laxa isolate MLX5 assessed as mycelial growth at 0.1 ug/ml at 25 degC after 4 days
|
Monilinia laxa
|
50.34
%
|
|
Journal : Crop Protection
Title : PCR-RFLP detection of the E198A mutation conferring resistance to benzimidazoles in field isolates of Monilinia laxa from Greece
Year : 2012
Volume : 39
First Page : 11
Last Page : 17
Authors : Malandrakis AA, Markoglou AN, Ziogas BN.
Abstract : Sensitivity to benzimidazoles in isolates of the brown rot pathogen (Monilinia laxa) collected from stone fruit in central and northern Greece was evaluated and the molecular basis for resistance was investigated. M. laxa isolates were classified as benzimidazole – sensitive (S) or highly resistant (HR) based on their sensitivity profiles to carbendazim. Thirty seven percent of the isolates belonged to the HR phenotype, carried no apparent fitness penalties and exhibited resistance factor values (based on EC50 values) greater than 500. Highly resistant isolates were also less sensitive to the benzimidazoles benomyl and thiophanate-methyl but more sensitive to the N-phenylcarbamate diethofencarb and the benzamide zoxamide compared to isolates belonging to the S phenotype. Fungitoxicity tests with fungicides belonging to other chemical classes revealed no cross resistance relationships between benzimidazoles and the dicarboximide iprodione, the phenylpyrrole fludioxonil, the hydroxyanilide fenhexamid, the carboxamide boscalid, the triazole tebuconazole and the strobilurin-type fungicide pyraclostrobin, indicating that a target site modification is probably responsible for the resistant phenotypes observed. Comparison of the β-tubulin gene DNA sequences between resistant and sensitive isolates revealed a point mutation resulting from the E198A substitution of the corresponding protein in all HR isolates tested. An Eco31I restriction site in the β-tubulin gene, which was destroyed in HR M. laxa isolates, allowed the development of a PCR-RFLP diagnostic for the detection of the E198A resistance mutation.
Fungicidal activity against Monilinia laxa isolate MLP2 assessed as mycelial growth at 0.1 ug/ml at 25 degC after 4 days
|
Monilinia laxa
|
25.0
%
|
|
Journal : Crop Protection
Title : PCR-RFLP detection of the E198A mutation conferring resistance to benzimidazoles in field isolates of Monilinia laxa from Greece
Year : 2012
Volume : 39
First Page : 11
Last Page : 17
Authors : Malandrakis AA, Markoglou AN, Ziogas BN.
Abstract : Sensitivity to benzimidazoles in isolates of the brown rot pathogen (Monilinia laxa) collected from stone fruit in central and northern Greece was evaluated and the molecular basis for resistance was investigated. M. laxa isolates were classified as benzimidazole – sensitive (S) or highly resistant (HR) based on their sensitivity profiles to carbendazim. Thirty seven percent of the isolates belonged to the HR phenotype, carried no apparent fitness penalties and exhibited resistance factor values (based on EC50 values) greater than 500. Highly resistant isolates were also less sensitive to the benzimidazoles benomyl and thiophanate-methyl but more sensitive to the N-phenylcarbamate diethofencarb and the benzamide zoxamide compared to isolates belonging to the S phenotype. Fungitoxicity tests with fungicides belonging to other chemical classes revealed no cross resistance relationships between benzimidazoles and the dicarboximide iprodione, the phenylpyrrole fludioxonil, the hydroxyanilide fenhexamid, the carboxamide boscalid, the triazole tebuconazole and the strobilurin-type fungicide pyraclostrobin, indicating that a target site modification is probably responsible for the resistant phenotypes observed. Comparison of the β-tubulin gene DNA sequences between resistant and sensitive isolates revealed a point mutation resulting from the E198A substitution of the corresponding protein in all HR isolates tested. An Eco31I restriction site in the β-tubulin gene, which was destroyed in HR M. laxa isolates, allowed the development of a PCR-RFLP diagnostic for the detection of the E198A resistance mutation.
Fungicidal activity against Monilinia laxa isolate MLBO5 assessed as mycelial growth at 0.1 ug/ml at 25 degC after 4 days
|
Monilinia laxa
|
21.05
%
|
|
Journal : Crop Protection
Title : PCR-RFLP detection of the E198A mutation conferring resistance to benzimidazoles in field isolates of Monilinia laxa from Greece
Year : 2012
Volume : 39
First Page : 11
Last Page : 17
Authors : Malandrakis AA, Markoglou AN, Ziogas BN.
Abstract : Sensitivity to benzimidazoles in isolates of the brown rot pathogen (Monilinia laxa) collected from stone fruit in central and northern Greece was evaluated and the molecular basis for resistance was investigated. M. laxa isolates were classified as benzimidazole – sensitive (S) or highly resistant (HR) based on their sensitivity profiles to carbendazim. Thirty seven percent of the isolates belonged to the HR phenotype, carried no apparent fitness penalties and exhibited resistance factor values (based on EC50 values) greater than 500. Highly resistant isolates were also less sensitive to the benzimidazoles benomyl and thiophanate-methyl but more sensitive to the N-phenylcarbamate diethofencarb and the benzamide zoxamide compared to isolates belonging to the S phenotype. Fungitoxicity tests with fungicides belonging to other chemical classes revealed no cross resistance relationships between benzimidazoles and the dicarboximide iprodione, the phenylpyrrole fludioxonil, the hydroxyanilide fenhexamid, the carboxamide boscalid, the triazole tebuconazole and the strobilurin-type fungicide pyraclostrobin, indicating that a target site modification is probably responsible for the resistant phenotypes observed. Comparison of the β-tubulin gene DNA sequences between resistant and sensitive isolates revealed a point mutation resulting from the E198A substitution of the corresponding protein in all HR isolates tested. An Eco31I restriction site in the β-tubulin gene, which was destroyed in HR M. laxa isolates, allowed the development of a PCR-RFLP diagnostic for the detection of the E198A resistance mutation.
Fungicidal activity against Monilinia laxa isolate MLBO2 assessed as mycelial growth at 0.1 ug/ml at 25 degC after 4 days
|
Monilinia laxa
|
10.03
%
|
|
Journal : Crop Protection
Title : PCR-RFLP detection of the E198A mutation conferring resistance to benzimidazoles in field isolates of Monilinia laxa from Greece
Year : 2012
Volume : 39
First Page : 11
Last Page : 17
Authors : Malandrakis AA, Markoglou AN, Ziogas BN.
Abstract : Sensitivity to benzimidazoles in isolates of the brown rot pathogen (Monilinia laxa) collected from stone fruit in central and northern Greece was evaluated and the molecular basis for resistance was investigated. M. laxa isolates were classified as benzimidazole – sensitive (S) or highly resistant (HR) based on their sensitivity profiles to carbendazim. Thirty seven percent of the isolates belonged to the HR phenotype, carried no apparent fitness penalties and exhibited resistance factor values (based on EC50 values) greater than 500. Highly resistant isolates were also less sensitive to the benzimidazoles benomyl and thiophanate-methyl but more sensitive to the N-phenylcarbamate diethofencarb and the benzamide zoxamide compared to isolates belonging to the S phenotype. Fungitoxicity tests with fungicides belonging to other chemical classes revealed no cross resistance relationships between benzimidazoles and the dicarboximide iprodione, the phenylpyrrole fludioxonil, the hydroxyanilide fenhexamid, the carboxamide boscalid, the triazole tebuconazole and the strobilurin-type fungicide pyraclostrobin, indicating that a target site modification is probably responsible for the resistant phenotypes observed. Comparison of the β-tubulin gene DNA sequences between resistant and sensitive isolates revealed a point mutation resulting from the E198A substitution of the corresponding protein in all HR isolates tested. An Eco31I restriction site in the β-tubulin gene, which was destroyed in HR M. laxa isolates, allowed the development of a PCR-RFLP diagnostic for the detection of the E198A resistance mutation.
Fungicidal activity against Monilinia laxa isolate MLA1 assessed as mycelial growth at 0.1 ug/ml at 25 degC after 4 days
|
Monilinia laxa
|
23.05
%
|
|
Journal : Crop Protection
Title : PCR-RFLP detection of the E198A mutation conferring resistance to benzimidazoles in field isolates of Monilinia laxa from Greece
Year : 2012
Volume : 39
First Page : 11
Last Page : 17
Authors : Malandrakis AA, Markoglou AN, Ziogas BN.
Abstract : Sensitivity to benzimidazoles in isolates of the brown rot pathogen (Monilinia laxa) collected from stone fruit in central and northern Greece was evaluated and the molecular basis for resistance was investigated. M. laxa isolates were classified as benzimidazole – sensitive (S) or highly resistant (HR) based on their sensitivity profiles to carbendazim. Thirty seven percent of the isolates belonged to the HR phenotype, carried no apparent fitness penalties and exhibited resistance factor values (based on EC50 values) greater than 500. Highly resistant isolates were also less sensitive to the benzimidazoles benomyl and thiophanate-methyl but more sensitive to the N-phenylcarbamate diethofencarb and the benzamide zoxamide compared to isolates belonging to the S phenotype. Fungitoxicity tests with fungicides belonging to other chemical classes revealed no cross resistance relationships between benzimidazoles and the dicarboximide iprodione, the phenylpyrrole fludioxonil, the hydroxyanilide fenhexamid, the carboxamide boscalid, the triazole tebuconazole and the strobilurin-type fungicide pyraclostrobin, indicating that a target site modification is probably responsible for the resistant phenotypes observed. Comparison of the β-tubulin gene DNA sequences between resistant and sensitive isolates revealed a point mutation resulting from the E198A substitution of the corresponding protein in all HR isolates tested. An Eco31I restriction site in the β-tubulin gene, which was destroyed in HR M. laxa isolates, allowed the development of a PCR-RFLP diagnostic for the detection of the E198A resistance mutation.
Fungicidal activity against Monilinia laxa isolate MLG1 assessed as mycelial growth at 0.1 ug/ml at 25 degC after 4 days
|
Monilinia laxa
|
0.0
%
|
|
Journal : Crop Protection
Title : PCR-RFLP detection of the E198A mutation conferring resistance to benzimidazoles in field isolates of Monilinia laxa from Greece
Year : 2012
Volume : 39
First Page : 11
Last Page : 17
Authors : Malandrakis AA, Markoglou AN, Ziogas BN.
Abstract : Sensitivity to benzimidazoles in isolates of the brown rot pathogen (Monilinia laxa) collected from stone fruit in central and northern Greece was evaluated and the molecular basis for resistance was investigated. M. laxa isolates were classified as benzimidazole – sensitive (S) or highly resistant (HR) based on their sensitivity profiles to carbendazim. Thirty seven percent of the isolates belonged to the HR phenotype, carried no apparent fitness penalties and exhibited resistance factor values (based on EC50 values) greater than 500. Highly resistant isolates were also less sensitive to the benzimidazoles benomyl and thiophanate-methyl but more sensitive to the N-phenylcarbamate diethofencarb and the benzamide zoxamide compared to isolates belonging to the S phenotype. Fungitoxicity tests with fungicides belonging to other chemical classes revealed no cross resistance relationships between benzimidazoles and the dicarboximide iprodione, the phenylpyrrole fludioxonil, the hydroxyanilide fenhexamid, the carboxamide boscalid, the triazole tebuconazole and the strobilurin-type fungicide pyraclostrobin, indicating that a target site modification is probably responsible for the resistant phenotypes observed. Comparison of the β-tubulin gene DNA sequences between resistant and sensitive isolates revealed a point mutation resulting from the E198A substitution of the corresponding protein in all HR isolates tested. An Eco31I restriction site in the β-tubulin gene, which was destroyed in HR M. laxa isolates, allowed the development of a PCR-RFLP diagnostic for the detection of the E198A resistance mutation.
Antifungal activity against Botryotinia fuckeliana in Cucumber seedlings assessed as reduction of gray mold diseases compound spraying was performed 3 hr prior to inoculation by preventive effect assay
|
Botryotinia fuckeliana
|
2.13
ug.mL-1
|
|
Journal : J Pesticide Sci
Year : 2010
Volume : 35
Issue : 1
First Page : 10
Last Page : 14
Protective antifungal activity against Botryotinia fuckeliana inoculated in fungicide-applied strawberry fruit assessed as disease severity measuring lesion diameter at 100 ug AI/ml applied 96 hr prior-inoculation
|
Botryotinia fuckeliana
|
1.0
mm
|
|
Journal : Pest Manag Sci
Title : Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity.
Year : 2012
Volume : 68
Issue : 6
First Page : 858
Last Page : 864
Authors : Veloukas T, Karaoglanidis GS.
Abstract : BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) constitute a fungicide class with increasing relevance in crop protection. These fungicides could play a crucial role in successful management of grey mould disease. In the present study the effect of fluopyram, a novel SDHI fungicide, on several developmental stages of Botrytis cinerea was determined in vitro, and the protective and curative activity against the pathogen was determined on strawberry fruit. Furthermore, fungal baseline sensitivity was determined in a set of 192 pathogen isolates. RESULTS: Inhibition of germ tube elongation was found to be the most sensitive growth stage affected by fluopyram, while mycelial growth was found to be the least sensitive growth stage. Fluopyram provided excellent protective activity against B. cinerea when applied at 100 µg mL(-1) 96, 48 or 24 h before the artificial inoculation of the strawberry fruit. Similarly, fluopyram showed a high curative activity when it was applied at 100 µg mL(-1) 24 h post-inoculation, but, when applications were conducted 48 or 96 h post-inoculation, disease control efficacy was modest or low. The measurement of baseline sensitivity showed that it was unimodal in all the populations tested. The individual EC(50) values for fluopyram ranged from 0.03 to 0.29 µg mL(-1). In addition, no correlation was found between sensitivity to fluopyram and sensitivity to other fungicides, including cyprodinil, fenhexamid, fludioxonil, iprodione, boscalid and pyraclostrobin. CONCLUSIONS: The obtained biological activity, baseline sensitivity and cross-resistance relationship data suggest that fluopyram could play a key role in grey mould management in the near future and encourage its introduction into spray programmes.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae MDR to EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR1 by germ tube elongation assay
|
Oculimacula yallundae
|
28.0
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae MDR to EC50 for wild type Oculimacula yallundae TriS by germ tube elongation assay
|
Oculimacula yallundae
|
33.0
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR2 to EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR1 by germ tube elongation assay
|
Oculimacula yallundae
|
1.0
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR2 to EC50 for wild type Oculimacula yallundae TriS by germ tube elongation assay
|
Oculimacula yallundae
|
1.2
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR1 to EC50 for wild type Oculimacula yallundae TriS by germ tube elongation assay
|
Oculimacula yallundae
|
1.2
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae MDR to EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR1 by mycelial growth inhibition assay
|
Oculimacula yallundae
|
1.7
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR1 to EC50 for wild type Oculimacula yallundae TriS by mycelial growth inhibition assay
|
Oculimacula yallundae
|
1.5
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Selectivity index, ratio of EC50 for Oculimacula acuformis to EC50 for Oculimacula yallundae in presence of 10 g glucose by mycelial growth inhibition assay
|
None
|
0.8
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Fungicidal activity against Oculimacula yallundae assessed as inhibition of mycelial growth in presence of 10 g glucose incubated at 19 degC in dark for 4 weeks
|
Oculimacula yallundae
|
0.4
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Fungicidal activity against Oculimacula acuformis assessed as inhibition of mycelial growth in presence of 10 g glucose incubated at 19 degC in dark for 4 weeks
|
Oculimacula acuformis
|
0.32
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Selectivity index, ratio of EC50 for Oculimacula acuformis to EC50 for Oculimacula yallundae by germ tube elongation inhibition assay
|
None
|
0.8
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Fungicidal activity against Oculimacula yallundae assessed as inhibition of germ tube elongation incubated at 19 degC in dark for 48 hr
|
Oculimacula yallundae
|
0.06
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Fungicidal activity against Oculimacula acuformis assessed as inhibition of germ tube elongation incubated at 19 degC in dark for 48 hr
|
Oculimacula acuformis
|
0.05
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR2 to EC50 for wild type Oculimacula yallundae TriS by mycelial growth inhibition assay
|
Oculimacula yallundae
|
1.2
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR2 to EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR1 by mycelial growth inhibition assay
|
Oculimacula yallundae
|
0.8
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae MDR to EC50 for wild type Oculimacula yallundae TriS by mycelial growth inhibition assay
|
Oculimacula yallundae
|
2.5
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Fungitoxicity against highly fenhexamid resistant Monilinia laxa MF-2 assessed as reduction in mycelial growth measured at 25 degC after 4 days
|
Monilinia laxa
|
11.1
ug.mL-1
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against highly fenhexamid resistant Monilinia laxa MF-3 assessed as reduction in mycelial growth measured at 25 degC after 4 days
|
Monilinia laxa
|
7.4
ug.mL-1
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against moderately fenhexamid resistant Monilinia laxa MF-7 assessed as reduction in mycelial growth measured at 25 degC after 4 days
|
Monilinia laxa
|
2.3
ug.mL-1
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against highly fenhexamid resistant Monilinia laxa MF-5 assessed as reduction in mycelial growth measured at 25 degC after 4 days
|
Monilinia laxa
|
6.9
ug.mL-1
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against moderately fenhexamid resistant Monilinia laxa MF-4 assessed as reduction in mycelial growth measured at 25 degC after 4 days
|
Monilinia laxa
|
4.0
ug.mL-1
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against moderately fenhexamid resistant Monilinia laxa MF-22 assessed as reduction in mycelial growth measured at 25 degC after 4 days
|
Monilinia laxa
|
3.7
ug.mL-1
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against moderately fenhexamid resistant Monilinia laxa MF-8 assessed as reduction in mycelial growth measured at 25 degC after 4 days
|
Monilinia laxa
|
5.8
ug.mL-1
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against moderately fenhexamid resistant Monilinia laxa MF-6 assessed as reduction in mycelial growth measured at 25 degC after 4 days
|
Monilinia laxa
|
5.8
ug.mL-1
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against moderately fenhexamid resistant Monilinia laxa MF-1 assessed as reduction in mycelial growth measured at 25 degC after 4 days
|
Monilinia laxa
|
2.2
ug.mL-1
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MF-2 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
111.0
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against wild type Monilinia laxa K2 assessed as reduction in mycelial growth measured at 25 degC after 4 days
|
Monilinia laxa
|
0.1
ug.mL-1
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MF-3 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
75.0
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MF-5 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
70.0
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MF-8 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
58.0
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MF-19 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
43.0
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MF-4 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
40.0
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MF-6 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
58.0
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MF-22 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
37.0
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MF-20 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
34.0
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MF-1 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
23.0
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MF-15 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
31.0
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MF-7 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
22.0
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MLP2 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
0.3
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MLK12 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
2.2
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MLC2 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
3.7
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MLK6 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
1.2
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MLBO7 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
0.4
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Resistance factor, ratio of EC50 for Monilinia laxa MLX2 to EC50 for wild type Monilinia laxa K2
|
Monilinia laxa
|
1.1
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MF-2 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
54.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MF-3 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
60.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MF-5 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
57.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MF-19 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
55.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MF-8 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
58.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MF-6 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
56.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MF-4 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
57.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MF-22 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
56.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MF-20 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
55.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MF-15 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
56.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MF-1 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
50.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MF-7 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
55.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MLP2 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
60.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MLK12 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
55.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MLC2 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
49.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MLBO7 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
60.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MLK6 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
52.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa MLX2 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
59.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Fungitoxicity against Monilinia laxa K2 assessed as diameter of mycelial colony measured at 25 degC after 4 days
|
Monilinia laxa
|
57.0
mm
|
|
Journal : Crop Protection
Title : Baseline sensitivity of Monilinia laxa from Greece to fenhexamid and analysis of fenhexamid-resistant mutants
Year : 2013
Volume : 46
First Page : 13
Last Page : 17
Authors : Malandrakis A, Anastasios Markoglou, George Karaoglanidis, Nikolaos Koukiasas, Thomas Veloukas.
Abstract : Fenhexamid is a hydroxyanilide fungicide with excellent performance against Botrytis cinerea but also effective against Monilinia spp. which cause brown rot disease in apple and stone fruit. A total of 75 Monilinia laxa field isolates were utilized to determine baseline sensitivity while a number of fenhexamid-resistant laboratory mutants were used to evaluate the resistance risk associated with the longevity of the effectiveness of fenhexamid. Fenhexamid was found to be highly effective against all field isolates. EC50 values ranged from 0.02 to 1 μg mL−1 and were distributed unimodaly around an average of 0.1 μg mL−1. M. laxa laboratory strains with moderate and high resistance levels to fenhexamid were isolated after UV mutagenesis. All fenhexamid-resistant strains showed parental sensitivity to carbendazim, iprodione, fludioxonil, pyraclostrobin, flusilazole and prochloraz. Interestingly, some of the mutant strains were also resistant to tridemorph, fenpropimorph and spiroxamine. Studies on fitness parameters of fenhexamid-resistant strains revealed a fitness cost on sporulation and pathogenicity but not on mycelial growth. These results suggest that fenhexamid should be a good alternative site-specific fungicide for the control of brown rot disease caused by M. laxa. However, appropriate anti-resistance strategies should be considered to ensure the successful commercial use of fenhexamid in the long run.
Antifungal activity against Botryotinia fuckeliana inoculated in strawberry fruit
|
Botryotinia fuckeliana
|
0.04
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity.
Year : 2012
Volume : 68
Issue : 6
First Page : 858
Last Page : 864
Authors : Veloukas T, Karaoglanidis GS.
Abstract : BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) constitute a fungicide class with increasing relevance in crop protection. These fungicides could play a crucial role in successful management of grey mould disease. In the present study the effect of fluopyram, a novel SDHI fungicide, on several developmental stages of Botrytis cinerea was determined in vitro, and the protective and curative activity against the pathogen was determined on strawberry fruit. Furthermore, fungal baseline sensitivity was determined in a set of 192 pathogen isolates. RESULTS: Inhibition of germ tube elongation was found to be the most sensitive growth stage affected by fluopyram, while mycelial growth was found to be the least sensitive growth stage. Fluopyram provided excellent protective activity against B. cinerea when applied at 100 µg mL(-1) 96, 48 or 24 h before the artificial inoculation of the strawberry fruit. Similarly, fluopyram showed a high curative activity when it was applied at 100 µg mL(-1) 24 h post-inoculation, but, when applications were conducted 48 or 96 h post-inoculation, disease control efficacy was modest or low. The measurement of baseline sensitivity showed that it was unimodal in all the populations tested. The individual EC(50) values for fluopyram ranged from 0.03 to 0.29 µg mL(-1). In addition, no correlation was found between sensitivity to fluopyram and sensitivity to other fungicides, including cyprodinil, fenhexamid, fludioxonil, iprodione, boscalid and pyraclostrobin. CONCLUSIONS: The obtained biological activity, baseline sensitivity and cross-resistance relationship data suggest that fluopyram could play a key role in grey mould management in the near future and encourage its introduction into spray programmes.
Curative antifungal activity against Botryotinia fuckeliana inoculated in strawberry fruit assessed as disease control efficacy at 100 ug AI/ml applied 96 hr post-inoculation relative to control
|
Botryotinia fuckeliana
|
23.2
%
|
|
Journal : Pest Manag Sci
Title : Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity.
Year : 2012
Volume : 68
Issue : 6
First Page : 858
Last Page : 864
Authors : Veloukas T, Karaoglanidis GS.
Abstract : BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) constitute a fungicide class with increasing relevance in crop protection. These fungicides could play a crucial role in successful management of grey mould disease. In the present study the effect of fluopyram, a novel SDHI fungicide, on several developmental stages of Botrytis cinerea was determined in vitro, and the protective and curative activity against the pathogen was determined on strawberry fruit. Furthermore, fungal baseline sensitivity was determined in a set of 192 pathogen isolates. RESULTS: Inhibition of germ tube elongation was found to be the most sensitive growth stage affected by fluopyram, while mycelial growth was found to be the least sensitive growth stage. Fluopyram provided excellent protective activity against B. cinerea when applied at 100 µg mL(-1) 96, 48 or 24 h before the artificial inoculation of the strawberry fruit. Similarly, fluopyram showed a high curative activity when it was applied at 100 µg mL(-1) 24 h post-inoculation, but, when applications were conducted 48 or 96 h post-inoculation, disease control efficacy was modest or low. The measurement of baseline sensitivity showed that it was unimodal in all the populations tested. The individual EC(50) values for fluopyram ranged from 0.03 to 0.29 µg mL(-1). In addition, no correlation was found between sensitivity to fluopyram and sensitivity to other fungicides, including cyprodinil, fenhexamid, fludioxonil, iprodione, boscalid and pyraclostrobin. CONCLUSIONS: The obtained biological activity, baseline sensitivity and cross-resistance relationship data suggest that fluopyram could play a key role in grey mould management in the near future and encourage its introduction into spray programmes.
Curative antifungal activity against Botryotinia fuckeliana inoculated in strawberry fruit assessed as disease severity measuring lesion diameter at 100 ug AI/ml applied 96 hr post-inoculation
|
Botryotinia fuckeliana
|
14.5
mm
|
|
Journal : Pest Manag Sci
Title : Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity.
Year : 2012
Volume : 68
Issue : 6
First Page : 858
Last Page : 864
Authors : Veloukas T, Karaoglanidis GS.
Abstract : BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) constitute a fungicide class with increasing relevance in crop protection. These fungicides could play a crucial role in successful management of grey mould disease. In the present study the effect of fluopyram, a novel SDHI fungicide, on several developmental stages of Botrytis cinerea was determined in vitro, and the protective and curative activity against the pathogen was determined on strawberry fruit. Furthermore, fungal baseline sensitivity was determined in a set of 192 pathogen isolates. RESULTS: Inhibition of germ tube elongation was found to be the most sensitive growth stage affected by fluopyram, while mycelial growth was found to be the least sensitive growth stage. Fluopyram provided excellent protective activity against B. cinerea when applied at 100 µg mL(-1) 96, 48 or 24 h before the artificial inoculation of the strawberry fruit. Similarly, fluopyram showed a high curative activity when it was applied at 100 µg mL(-1) 24 h post-inoculation, but, when applications were conducted 48 or 96 h post-inoculation, disease control efficacy was modest or low. The measurement of baseline sensitivity showed that it was unimodal in all the populations tested. The individual EC(50) values for fluopyram ranged from 0.03 to 0.29 µg mL(-1). In addition, no correlation was found between sensitivity to fluopyram and sensitivity to other fungicides, including cyprodinil, fenhexamid, fludioxonil, iprodione, boscalid and pyraclostrobin. CONCLUSIONS: The obtained biological activity, baseline sensitivity and cross-resistance relationship data suggest that fluopyram could play a key role in grey mould management in the near future and encourage its introduction into spray programmes.
Curative antifungal activity against Botryotinia fuckeliana inoculated in strawberry fruit assessed as disease control efficacy at 100 ug AI/ml applied 24 hr post-inoculation relative to control
|
Botryotinia fuckeliana
|
61.4
%
|
|
Journal : Pest Manag Sci
Title : Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity.
Year : 2012
Volume : 68
Issue : 6
First Page : 858
Last Page : 864
Authors : Veloukas T, Karaoglanidis GS.
Abstract : BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) constitute a fungicide class with increasing relevance in crop protection. These fungicides could play a crucial role in successful management of grey mould disease. In the present study the effect of fluopyram, a novel SDHI fungicide, on several developmental stages of Botrytis cinerea was determined in vitro, and the protective and curative activity against the pathogen was determined on strawberry fruit. Furthermore, fungal baseline sensitivity was determined in a set of 192 pathogen isolates. RESULTS: Inhibition of germ tube elongation was found to be the most sensitive growth stage affected by fluopyram, while mycelial growth was found to be the least sensitive growth stage. Fluopyram provided excellent protective activity against B. cinerea when applied at 100 µg mL(-1) 96, 48 or 24 h before the artificial inoculation of the strawberry fruit. Similarly, fluopyram showed a high curative activity when it was applied at 100 µg mL(-1) 24 h post-inoculation, but, when applications were conducted 48 or 96 h post-inoculation, disease control efficacy was modest or low. The measurement of baseline sensitivity showed that it was unimodal in all the populations tested. The individual EC(50) values for fluopyram ranged from 0.03 to 0.29 µg mL(-1). In addition, no correlation was found between sensitivity to fluopyram and sensitivity to other fungicides, including cyprodinil, fenhexamid, fludioxonil, iprodione, boscalid and pyraclostrobin. CONCLUSIONS: The obtained biological activity, baseline sensitivity and cross-resistance relationship data suggest that fluopyram could play a key role in grey mould management in the near future and encourage its introduction into spray programmes.
Curative antifungal activity against Botryotinia fuckeliana inoculated in strawberry fruit assessed as disease severity measuring lesion diameter at 100 ug AI/ml applied 24 hr post-inoculation
|
Botryotinia fuckeliana
|
7.2
mm
|
|
Journal : Pest Manag Sci
Title : Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity.
Year : 2012
Volume : 68
Issue : 6
First Page : 858
Last Page : 864
Authors : Veloukas T, Karaoglanidis GS.
Abstract : BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) constitute a fungicide class with increasing relevance in crop protection. These fungicides could play a crucial role in successful management of grey mould disease. In the present study the effect of fluopyram, a novel SDHI fungicide, on several developmental stages of Botrytis cinerea was determined in vitro, and the protective and curative activity against the pathogen was determined on strawberry fruit. Furthermore, fungal baseline sensitivity was determined in a set of 192 pathogen isolates. RESULTS: Inhibition of germ tube elongation was found to be the most sensitive growth stage affected by fluopyram, while mycelial growth was found to be the least sensitive growth stage. Fluopyram provided excellent protective activity against B. cinerea when applied at 100 µg mL(-1) 96, 48 or 24 h before the artificial inoculation of the strawberry fruit. Similarly, fluopyram showed a high curative activity when it was applied at 100 µg mL(-1) 24 h post-inoculation, but, when applications were conducted 48 or 96 h post-inoculation, disease control efficacy was modest or low. The measurement of baseline sensitivity showed that it was unimodal in all the populations tested. The individual EC(50) values for fluopyram ranged from 0.03 to 0.29 µg mL(-1). In addition, no correlation was found between sensitivity to fluopyram and sensitivity to other fungicides, including cyprodinil, fenhexamid, fludioxonil, iprodione, boscalid and pyraclostrobin. CONCLUSIONS: The obtained biological activity, baseline sensitivity and cross-resistance relationship data suggest that fluopyram could play a key role in grey mould management in the near future and encourage its introduction into spray programmes.
Curative antifungal activity against Botryotinia fuckeliana inoculated in strawberry fruit assessed as disease control efficacy at 100 ug AI/ml applied 48 hr post-inoculation relative to control
|
Botryotinia fuckeliana
|
89.2
%
|
|
Journal : Pest Manag Sci
Title : Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity.
Year : 2012
Volume : 68
Issue : 6
First Page : 858
Last Page : 864
Authors : Veloukas T, Karaoglanidis GS.
Abstract : BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) constitute a fungicide class with increasing relevance in crop protection. These fungicides could play a crucial role in successful management of grey mould disease. In the present study the effect of fluopyram, a novel SDHI fungicide, on several developmental stages of Botrytis cinerea was determined in vitro, and the protective and curative activity against the pathogen was determined on strawberry fruit. Furthermore, fungal baseline sensitivity was determined in a set of 192 pathogen isolates. RESULTS: Inhibition of germ tube elongation was found to be the most sensitive growth stage affected by fluopyram, while mycelial growth was found to be the least sensitive growth stage. Fluopyram provided excellent protective activity against B. cinerea when applied at 100 µg mL(-1) 96, 48 or 24 h before the artificial inoculation of the strawberry fruit. Similarly, fluopyram showed a high curative activity when it was applied at 100 µg mL(-1) 24 h post-inoculation, but, when applications were conducted 48 or 96 h post-inoculation, disease control efficacy was modest or low. The measurement of baseline sensitivity showed that it was unimodal in all the populations tested. The individual EC(50) values for fluopyram ranged from 0.03 to 0.29 µg mL(-1). In addition, no correlation was found between sensitivity to fluopyram and sensitivity to other fungicides, including cyprodinil, fenhexamid, fludioxonil, iprodione, boscalid and pyraclostrobin. CONCLUSIONS: The obtained biological activity, baseline sensitivity and cross-resistance relationship data suggest that fluopyram could play a key role in grey mould management in the near future and encourage its introduction into spray programmes.
Curative antifungal activity against Botryotinia fuckeliana inoculated in strawberry fruit assessed as disease severity measuring lesion diameter at 100 ug AI/ml applied 48 hr post-inoculation
|
Botryotinia fuckeliana
|
2.0
mm
|
|
Journal : Pest Manag Sci
Title : Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity.
Year : 2012
Volume : 68
Issue : 6
First Page : 858
Last Page : 864
Authors : Veloukas T, Karaoglanidis GS.
Abstract : BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) constitute a fungicide class with increasing relevance in crop protection. These fungicides could play a crucial role in successful management of grey mould disease. In the present study the effect of fluopyram, a novel SDHI fungicide, on several developmental stages of Botrytis cinerea was determined in vitro, and the protective and curative activity against the pathogen was determined on strawberry fruit. Furthermore, fungal baseline sensitivity was determined in a set of 192 pathogen isolates. RESULTS: Inhibition of germ tube elongation was found to be the most sensitive growth stage affected by fluopyram, while mycelial growth was found to be the least sensitive growth stage. Fluopyram provided excellent protective activity against B. cinerea when applied at 100 µg mL(-1) 96, 48 or 24 h before the artificial inoculation of the strawberry fruit. Similarly, fluopyram showed a high curative activity when it was applied at 100 µg mL(-1) 24 h post-inoculation, but, when applications were conducted 48 or 96 h post-inoculation, disease control efficacy was modest or low. The measurement of baseline sensitivity showed that it was unimodal in all the populations tested. The individual EC(50) values for fluopyram ranged from 0.03 to 0.29 µg mL(-1). In addition, no correlation was found between sensitivity to fluopyram and sensitivity to other fungicides, including cyprodinil, fenhexamid, fludioxonil, iprodione, boscalid and pyraclostrobin. CONCLUSIONS: The obtained biological activity, baseline sensitivity and cross-resistance relationship data suggest that fluopyram could play a key role in grey mould management in the near future and encourage its introduction into spray programmes.
Protective antifungal activity against Botryotinia fuckeliana inoculated in fungicide-applied strawberry fruit assessed as disease control efficacy at 100 ug AI/ml applied 24 hr prior inoculation relative to control
|
Botryotinia fuckeliana
|
99.2
%
|
|
Journal : Pest Manag Sci
Title : Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity.
Year : 2012
Volume : 68
Issue : 6
First Page : 858
Last Page : 864
Authors : Veloukas T, Karaoglanidis GS.
Abstract : BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) constitute a fungicide class with increasing relevance in crop protection. These fungicides could play a crucial role in successful management of grey mould disease. In the present study the effect of fluopyram, a novel SDHI fungicide, on several developmental stages of Botrytis cinerea was determined in vitro, and the protective and curative activity against the pathogen was determined on strawberry fruit. Furthermore, fungal baseline sensitivity was determined in a set of 192 pathogen isolates. RESULTS: Inhibition of germ tube elongation was found to be the most sensitive growth stage affected by fluopyram, while mycelial growth was found to be the least sensitive growth stage. Fluopyram provided excellent protective activity against B. cinerea when applied at 100 µg mL(-1) 96, 48 or 24 h before the artificial inoculation of the strawberry fruit. Similarly, fluopyram showed a high curative activity when it was applied at 100 µg mL(-1) 24 h post-inoculation, but, when applications were conducted 48 or 96 h post-inoculation, disease control efficacy was modest or low. The measurement of baseline sensitivity showed that it was unimodal in all the populations tested. The individual EC(50) values for fluopyram ranged from 0.03 to 0.29 µg mL(-1). In addition, no correlation was found between sensitivity to fluopyram and sensitivity to other fungicides, including cyprodinil, fenhexamid, fludioxonil, iprodione, boscalid and pyraclostrobin. CONCLUSIONS: The obtained biological activity, baseline sensitivity and cross-resistance relationship data suggest that fluopyram could play a key role in grey mould management in the near future and encourage its introduction into spray programmes.
Protective antifungal activity against Botryotinia fuckeliana inoculated in fungicide-applied strawberry fruit assessed as disease severity measuring lesion diameter at 100 ug AI/ml applied 24 hr prior inoculation
|
Botryotinia fuckeliana
|
0.1
mm
|
|
Journal : Pest Manag Sci
Title : Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity.
Year : 2012
Volume : 68
Issue : 6
First Page : 858
Last Page : 864
Authors : Veloukas T, Karaoglanidis GS.
Abstract : BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) constitute a fungicide class with increasing relevance in crop protection. These fungicides could play a crucial role in successful management of grey mould disease. In the present study the effect of fluopyram, a novel SDHI fungicide, on several developmental stages of Botrytis cinerea was determined in vitro, and the protective and curative activity against the pathogen was determined on strawberry fruit. Furthermore, fungal baseline sensitivity was determined in a set of 192 pathogen isolates. RESULTS: Inhibition of germ tube elongation was found to be the most sensitive growth stage affected by fluopyram, while mycelial growth was found to be the least sensitive growth stage. Fluopyram provided excellent protective activity against B. cinerea when applied at 100 µg mL(-1) 96, 48 or 24 h before the artificial inoculation of the strawberry fruit. Similarly, fluopyram showed a high curative activity when it was applied at 100 µg mL(-1) 24 h post-inoculation, but, when applications were conducted 48 or 96 h post-inoculation, disease control efficacy was modest or low. The measurement of baseline sensitivity showed that it was unimodal in all the populations tested. The individual EC(50) values for fluopyram ranged from 0.03 to 0.29 µg mL(-1). In addition, no correlation was found between sensitivity to fluopyram and sensitivity to other fungicides, including cyprodinil, fenhexamid, fludioxonil, iprodione, boscalid and pyraclostrobin. CONCLUSIONS: The obtained biological activity, baseline sensitivity and cross-resistance relationship data suggest that fluopyram could play a key role in grey mould management in the near future and encourage its introduction into spray programmes.
Protective antifungal activity against Botryotinia fuckeliana inoculated in fungicide-applied strawberry fruit assessed as disease control efficacy at 100 ug AI/ml applied 48 hr prior inoculation relative to control
|
Botryotinia fuckeliana
|
97.6
%
|
|
Journal : Pest Manag Sci
Title : Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity.
Year : 2012
Volume : 68
Issue : 6
First Page : 858
Last Page : 864
Authors : Veloukas T, Karaoglanidis GS.
Abstract : BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) constitute a fungicide class with increasing relevance in crop protection. These fungicides could play a crucial role in successful management of grey mould disease. In the present study the effect of fluopyram, a novel SDHI fungicide, on several developmental stages of Botrytis cinerea was determined in vitro, and the protective and curative activity against the pathogen was determined on strawberry fruit. Furthermore, fungal baseline sensitivity was determined in a set of 192 pathogen isolates. RESULTS: Inhibition of germ tube elongation was found to be the most sensitive growth stage affected by fluopyram, while mycelial growth was found to be the least sensitive growth stage. Fluopyram provided excellent protective activity against B. cinerea when applied at 100 µg mL(-1) 96, 48 or 24 h before the artificial inoculation of the strawberry fruit. Similarly, fluopyram showed a high curative activity when it was applied at 100 µg mL(-1) 24 h post-inoculation, but, when applications were conducted 48 or 96 h post-inoculation, disease control efficacy was modest or low. The measurement of baseline sensitivity showed that it was unimodal in all the populations tested. The individual EC(50) values for fluopyram ranged from 0.03 to 0.29 µg mL(-1). In addition, no correlation was found between sensitivity to fluopyram and sensitivity to other fungicides, including cyprodinil, fenhexamid, fludioxonil, iprodione, boscalid and pyraclostrobin. CONCLUSIONS: The obtained biological activity, baseline sensitivity and cross-resistance relationship data suggest that fluopyram could play a key role in grey mould management in the near future and encourage its introduction into spray programmes.
Protective antifungal activity against Botryotinia fuckeliana inoculated in fungicide-applied strawberry fruit assessed as disease severity measuring lesion diameter at 100 ug AI/ml applied 48 hr prior inoculation
|
Botryotinia fuckeliana
|
0.4
mm
|
|
Journal : Pest Manag Sci
Title : Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity.
Year : 2012
Volume : 68
Issue : 6
First Page : 858
Last Page : 864
Authors : Veloukas T, Karaoglanidis GS.
Abstract : BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) constitute a fungicide class with increasing relevance in crop protection. These fungicides could play a crucial role in successful management of grey mould disease. In the present study the effect of fluopyram, a novel SDHI fungicide, on several developmental stages of Botrytis cinerea was determined in vitro, and the protective and curative activity against the pathogen was determined on strawberry fruit. Furthermore, fungal baseline sensitivity was determined in a set of 192 pathogen isolates. RESULTS: Inhibition of germ tube elongation was found to be the most sensitive growth stage affected by fluopyram, while mycelial growth was found to be the least sensitive growth stage. Fluopyram provided excellent protective activity against B. cinerea when applied at 100 µg mL(-1) 96, 48 or 24 h before the artificial inoculation of the strawberry fruit. Similarly, fluopyram showed a high curative activity when it was applied at 100 µg mL(-1) 24 h post-inoculation, but, when applications were conducted 48 or 96 h post-inoculation, disease control efficacy was modest or low. The measurement of baseline sensitivity showed that it was unimodal in all the populations tested. The individual EC(50) values for fluopyram ranged from 0.03 to 0.29 µg mL(-1). In addition, no correlation was found between sensitivity to fluopyram and sensitivity to other fungicides, including cyprodinil, fenhexamid, fludioxonil, iprodione, boscalid and pyraclostrobin. CONCLUSIONS: The obtained biological activity, baseline sensitivity and cross-resistance relationship data suggest that fluopyram could play a key role in grey mould management in the near future and encourage its introduction into spray programmes.
Protective antifungal activity against Botryotinia fuckeliana inoculated in fungicide-applied strawberry fruit assessed as disease control efficacy at 100 ug AI/ml applied 96 hr prior-inoculation relative to control
|
Botryotinia fuckeliana
|
94.4
%
|
|
Journal : Pest Manag Sci
Title : Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity.
Year : 2012
Volume : 68
Issue : 6
First Page : 858
Last Page : 864
Authors : Veloukas T, Karaoglanidis GS.
Abstract : BACKGROUND: Succinate dehydrogenase inhibitors (SDHIs) constitute a fungicide class with increasing relevance in crop protection. These fungicides could play a crucial role in successful management of grey mould disease. In the present study the effect of fluopyram, a novel SDHI fungicide, on several developmental stages of Botrytis cinerea was determined in vitro, and the protective and curative activity against the pathogen was determined on strawberry fruit. Furthermore, fungal baseline sensitivity was determined in a set of 192 pathogen isolates. RESULTS: Inhibition of germ tube elongation was found to be the most sensitive growth stage affected by fluopyram, while mycelial growth was found to be the least sensitive growth stage. Fluopyram provided excellent protective activity against B. cinerea when applied at 100 µg mL(-1) 96, 48 or 24 h before the artificial inoculation of the strawberry fruit. Similarly, fluopyram showed a high curative activity when it was applied at 100 µg mL(-1) 24 h post-inoculation, but, when applications were conducted 48 or 96 h post-inoculation, disease control efficacy was modest or low. The measurement of baseline sensitivity showed that it was unimodal in all the populations tested. The individual EC(50) values for fluopyram ranged from 0.03 to 0.29 µg mL(-1). In addition, no correlation was found between sensitivity to fluopyram and sensitivity to other fungicides, including cyprodinil, fenhexamid, fludioxonil, iprodione, boscalid and pyraclostrobin. CONCLUSIONS: The obtained biological activity, baseline sensitivity and cross-resistance relationship data suggest that fluopyram could play a key role in grey mould management in the near future and encourage its introduction into spray programmes.