Selectivity ratio of relative toxicity against po dosed rat to relative efficacy against Gibberella zeae
|
None
|
0.0
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Toxicity in po dosed Rattus norvegicus (rat) relative to metconazole
|
Rattus norvegicus
|
0.19
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Antifungal activity against Fusarium graminearum after 8 hr by microscopic analysis relative to prothioconazole
|
Fusarium graminearum
|
0.0
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Growth inhibition of Fusarium graminearum isolate 74B at 10'-4 M after 14 days
|
Fusarium graminearum
|
95.7
%
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Growth inhibition of Fusarium graminearum isolate 137 at 10'-4 M after 14 days
|
Fusarium graminearum
|
99.6
%
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Growth inhibition of Fusarium graminearum isolate 4527b at 10'-4 M after 14 days
|
Fusarium graminearum
|
98.0
%
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Growth inhibition of Fusarium graminearum isolate 123 at 10'-4 M after 14 days
|
Fusarium graminearum
|
95.9
%
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Growth inhibition of Fusarium graminearum isolate 102 at 10'-4 M after 14 days
|
Fusarium graminearum
|
97.1
%
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Growth inhibition of Fusarium graminearum isolate 106 at 10'-4 M after 14 days
|
Fusarium graminearum
|
95.4
%
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Growth inhibition of Fusarium graminearum isolate 37 at 10'-4 M after 14 days
|
Fusarium graminearum
|
98.7
%
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Antifungal activity against Fusarium graminearum isolate 137 after 8 hr by microscopic analysis
|
Fusarium graminearum
|
10800000.0
nM
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Antifungal activity against Fusarium graminearum isolate 106 after 8 hr by microscopic analysis
|
Fusarium graminearum
|
10800000.0
nM
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Antifungal activity against Fusarium graminearum isolate 123 after 8 hr by microscopic analysis
|
Fusarium graminearum
|
10800000.0
nM
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Antifungal activity against Fusarium graminearum isolate 102 after 8 hr by microscopic analysis
|
Fusarium graminearum
|
10800000.0
nM
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Antifungal activity against Fusarium graminearum isolate 37 after 8 hr by microscopic analysis
|
Fusarium graminearum
|
10800000.0
nM
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Toxicity in po dosed Rattus norvegicus (rat)
|
Rattus norvegicus
|
3160.0
mg.kg-1
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Aqueous solubility of the compound assessed per 100 g
|
None
|
0.7
mg
|
|
Journal : Crop Protection
Year : 2007
Volume : 26
Issue : 4
First Page : 683
Last Page : 690
Resistance index, ratio of EC50 for prochloraz-resistant Oculimacula yallundae isolate ProR2 to EC50 for prochloraz-susceptible Oculimacula yallundae isolate ProS by germ tube elongation inhibition assay
|
Oculimacula yallundae
|
3.0
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for prochloraz-resistant Oculimacula yallundae isolate ProR1 to EC50 for prochloraz-susceptible Oculimacula yallundae isolate ProS by germ tube elongation inhibition assay
|
Oculimacula yallundae
|
2.0
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for prochloraz-resistant Oculimacula yallundae isolate ProR2 to EC50 for prochloraz-susceptible Oculimacula yallundae isolate ProS by mycelial growth inhibition assay
|
Oculimacula yallundae
|
5.0
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for prochloraz-resistant Oculimacula yallundae isolate ProR1 to EC50 for prochloraz-susceptible Oculimacula yallundae isolate ProS by mycelial growth inhibition assay
|
Oculimacula yallundae
|
3.3
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Fungicidal activity against prochloraz-susceptible Oculimacula yallundae isolate ProS assessed as inhibition of germ tube elongation incubated at 19 degC in dark for 48 hr
|
Oculimacula yallundae
|
0.3
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Fungicidal activity against prochloraz-susceptible Oculimacula yallundae isolate ProS assessed as inhibition of mycelial growth in presence of 10 g glucose incubated at 19 degC in dark for 4 weeks
|
Oculimacula yallundae
|
0.3
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae MDR to EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR1 by germ tube elongation assay
|
Oculimacula yallundae
|
5.0
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae MDR to EC50 for wild type Oculimacula yallundae TriS by germ tube elongation assay
|
Oculimacula yallundae
|
150.0
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR2 to EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR1 by germ tube elongation assay
|
Oculimacula yallundae
|
2.0
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR2 to EC50 for wild type Oculimacula yallundae TriS by germ tube elongation assay
|
Oculimacula yallundae
|
60.0
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR1 to EC50 for wild type Oculimacula yallundae TriS by germ tube elongation assay
|
Oculimacula yallundae
|
30.0
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae MDR to EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR1 by mycelial growth inhibition assay
|
Oculimacula yallundae
|
2.0
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR1 to EC50 for wild type Oculimacula yallundae TriS by mycelial growth inhibition assay
|
Oculimacula yallundae
|
3.3
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Selectivity index, ratio of EC50 for Oculimacula acuformis to EC50 for Oculimacula yallundae in presence of 10 g glucose by mycelial growth inhibition assay
|
None
|
2.0
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Fungicidal activity against Oculimacula yallundae assessed as inhibition of mycelial growth in presence of 10 g glucose incubated at 19 degC in dark for 4 weeks
|
Oculimacula yallundae
|
0.15
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Fungicidal activity against Oculimacula acuformis assessed as inhibition of mycelial growth in presence of 10 g glucose incubated at 19 degC in dark for 4 weeks
|
Oculimacula acuformis
|
0.3
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Selectivity index, ratio of EC50 for Oculimacula acuformis to EC50 for Oculimacula yallundae by germ tube elongation inhibition assay
|
None
|
15.0
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Fungicidal activity against Oculimacula yallundae assessed as inhibition of germ tube elongation incubated at 19 degC in dark for 48 hr
|
Oculimacula yallundae
|
0.02
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Fungicidal activity against Oculimacula acuformis assessed as inhibition of germ tube elongation incubated at 19 degC in dark for 48 hr
|
Oculimacula acuformis
|
0.3
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR2 to EC50 for wild type Oculimacula yallundae TriS by mycelial growth inhibition assay
|
Oculimacula yallundae
|
3.3
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR2 to EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae TriR1 by mycelial growth inhibition assay
|
Oculimacula yallundae
|
1.0
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Resistance index, ratio of EC50 for sterol 14alpha-demethylation inhibitor-resistant Oculimacula yallundae MDR to EC50 for wild type Oculimacula yallundae TriS by mycelial growth inhibition assay
|
Oculimacula yallundae
|
6.7
|
|
Journal : Pest Manag Sci
Title : Fungicide resistance status in French populations of the wheat eyespot fungi Oculimacula acuformis and Oculimacula yallundae.
Year : 2013
Volume : 69
Issue : 1
First Page : 15
Last Page : 26
Authors : Leroux P, Gredt M, Remuson F, Micoud A, Walker AS.
Abstract : Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α-demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long-term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.
Fungicidal activity against Zymoseptoria tritici isolate TAG74-3 with 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations inoculated on compound pre-treated wheat cultivar Riband seedlings assessed as fungal DNA level at doses > 1/16 recommended field rate measured 21 days post fungal inoculation
|
Zymoseptoria tritici
|
None
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate OP7 with 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations inoculated on compound pre-treated wheat cultivar Riband seedlings assessed as fungal DNA level at doses > 1/16 recommended field rate measured 21 days post fungal inoculation
|
Zymoseptoria tritici
|
None
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate TAG74-3 with 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations inoculated on compound pre-treated wheat cultivar Riband seedlings assessed as pycnidia formation at doses > 1/16 recommended field rate measured 21 days post fungal inoculation
|
Zymoseptoria tritici
|
None
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate OP7 with 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations inoculated on compound pre-treated wheat cultivar Riband seedlings assessed as pycnidia formation at doses > 1/16 recommended field rate measured 21 days post fungal inoculation
|
Zymoseptoria tritici
|
None
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate TAG74-3 with 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations inoculated on compound pre-treated wheat cultivar Riband seedlings assessed as pycnidia formation at 39.06 ppm measured 21 days post fungal inoculation
|
Zymoseptoria tritici
|
None
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate OP7 with 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations inoculated on compound pre-treated wheat cultivar Riband seedlings assessed as pycnidia formation at 39.06 ppm measured 21 days post fungal inoculation
|
Zymoseptoria tritici
|
None
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate R10-13 without 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations inoculated on compound pre-treated wheat cultivar Riband seedlings assessed as fungal DNA level at 39.06 ppm measured 21 days post fungal inoculation
|
Zymoseptoria tritici
|
400.0
pg
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate OP6 without 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations inoculated on compound pre-treated wheat cultivar Riband seedlings assessed as fungal DNA level at 39.06 ppm measured 21 days post fungal inoculation
|
Zymoseptoria tritici
|
14.0
pg
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate TAG74-3 with 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations inoculated on compound pre-treated wheat cultivar Riband seedlings assessed as fungal DNA level at 39.06 ppm measured 21 days post fungal inoculation
|
Zymoseptoria tritici
|
9284.0
pg
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate OP7 with 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations inoculated on compound pre-treated wheat cultivar Riband seedlings assessed as fungal DNA level at 39.06 ppm measured 21 days post fungal inoculation
|
Zymoseptoria tritici
|
1600.0
pg
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate TAG74-3 with 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations assessed as fungal growth inhibition
|
Zymoseptoria tritici
|
1.41
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate OP7 with 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations assessed as fungal growth inhibition
|
Zymoseptoria tritici
|
0.819
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate TAG1-18 with 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations assessed as fungal growth inhibition
|
Zymoseptoria tritici
|
0.911
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate V18 with 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations assessed as fungal growth inhibition
|
Zymoseptoria tritici
|
0.759
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate OP6 without 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations assessed as fungal growth inhibition
|
Zymoseptoria tritici
|
0.085
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate R10-13 without 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations assessed as fungal growth inhibition
|
Zymoseptoria tritici
|
0.091
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate R03-54 without 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations assessed as fungal growth inhibition
|
Zymoseptoria tritici
|
0.092
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate R03-29 without 120 bp insertion expressing CYP51 variant with combination of L50S, S188N, I381V, deltaY459/G460 and N513K mutations assessed as fungal growth inhibition
|
Zymoseptoria tritici
|
0.067
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.
Fungicidal activity against Zymoseptoria tritici isolate IPO323 without 120 bp insertion expressing wild type CYP51 assessed as fungal growth inhibition
|
Zymoseptoria tritici
|
0.0015
ug.mL-1
|
|
Journal : Pest Manag Sci
Title : Overexpression of the sterol 14α-demethylase gene (MgCYP51) in Mycosphaerella graminicola isolates confers a novel azole fungicide sensitivity phenotype.
Year : 2012
Volume : 68
Issue : 7
First Page : 1034
Last Page : 1040
Authors : Cools HJ, Bayon C, Atkins S, Lucas JA, Fraaije BA.
Abstract : The recent evolution towards resistance to azole fungicides in European populations of the wheat pathogen Mycosphaerella graminicola has been caused by the progressive accumulation of mutations in MgCYP51 gene, encoding the azole target sterol 14α-demethylase. Particular combinations of mutations have been shown specifically to affect the interaction of the MgCYP51 protein with different members of the azole class. Although additional mechanisms, including increased MgCYP51 expression and enhanced active efflux, have been proposed, the genetic changes underlying these mechanisms are unknown.Analysis of the azole sensitivities of recent M. graminicola isolates identified a novel phenotype, seemingly independent of changes in MgCYP51 coding sequence. Characterised by a 7-16-fold reduction in in vitro sensitivity to all azoles tested and by growth on seedlings at higher doses of azoles in glasshouse tests compared with isolates carrying the same MgCYP51 variant (L50S, S188N, I381V, ΔY459/G460, N513K), isolates with this phenotype constitutively overexpress MgCYP51 by between 10- and 40-fold compared with the wild type. Analysis of sequences upstream of the predicted MgCYP51 translation start codon identified a novel 120 bp indel, considered to be an insertion, in isolates overexpressing MgCYP51.The identification of an insertion in the predicted MgCYP51 promoter in azole-resistant isolates overexpressing MgCYP51 is the first report of a genetic mechanism, other than changes in target-site coding sequence, affecting sensitivity to multiple azoles in field isolates of M. graminicola. The identification of recent isolates overexpressing MgCYP51 confirms the ongoing evolution and diversification of resistance mechanisms in European populations of M. graminicola.