Antiviral activity against Hepatitic C virus genotype 1b clone ET infected in human Huh7 replicon cells after 72 hrs by luciferase reporter gene assay
|
Hepatitis C virus subtype 1b
|
82.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Finger loop inhibitors of the HCV NS5b polymerase. Part II. Optimization of tetracyclic indole-based macrocycle leading to the discovery of TMC647055.
Year : 2012
Volume : 22
Issue : 13
First Page : 4437
Last Page : 4443
Authors : Vendeville S, Lin TI, Hu L, Tahri A, McGowan D, Cummings MD, Amssoms K, Canard M, Last S, Van den Steen I, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Van Emelen K, Nyanguile O, Simmen K, Raboisson P.
Abstract : Optimization of a novel series of macrocyclic indole-based inhibitors of the HCV NS5b polymerase targeting the finger loop domain led to the discovery of lead compounds exhibiting improved potency in cellular assays and superior pharmacokinetic profile. Further lead optimization performed on the most promising unsaturated-bridged subseries provided the clinical candidate 27-cyclohexyl-12,13,16,17-tetrahydro-22-methoxy-11,17-dimethyl-10,10-dioxide-2,19-methano-3,7:4,1-dimetheno-1H,11H-14,10,2,9,11,17-benzoxathiatetraazacyclo docosine-8,18(9H,15H)-dione, TMC647055 (compound 18a). This non-zwitterionic 17-membered ring macrocycle combines nanomolar cellular potency (EC(50) of 82 nM) with minimal associated cell toxicity (CC(50)>20 μM) and promising pharmacokinetic profiles in rats and dogs. TMC647055 is currently being evaluated in the clinic.
Antiviral activity against Hepatitis C virus genotype 6a infected in human HuH7 by transient replicon assay
|
Hepatitis C virus subtype 6a
|
113.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Antiviral activity against Hepatitis C virus genotype 4a infected in human HuH7 by transient replicon assay
|
Hepatitis C virus subtype 4a
|
97.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Antiviral activity against Hepatitis C virus genotype 3a infected in human HuH7 by transient replicon assay
|
Hepatitis C virus subtype 3a
|
88.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Antiviral activity against Hepatitis C virus genotype 1b infected in human HuH7 by transient replicon assay
|
Hepatitis C virus subtype 1b
|
27.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Antiviral activity against wild-type Hepatitis C virus Con 1b infected in human HuH7 by transient replicon assay
|
Hepatitis C virus (isolate Con1)
|
51.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Antiviral activity against Hepatitis C virus genotype 1a infected in human HuH7 by transient replicon assay
|
Hepatitis C virus subtype 1a
|
48.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Binding affinity to Hepatitis C virus genotype 6a NS5B by surface plasmon resonance analysis
|
Hepatitis C virus subtype 6a
|
30.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Binding affinity to Hepatitis C virus genotype 5a NS5B by surface plasmon resonance analysis
|
Hepatitis C virus subtype 5a
|
21.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Binding affinity to Hepatitis C virus genotype 4a NS5B by surface plasmon resonance analysis
|
Hepatitis C virus subtype 4a
|
2.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Binding affinity to Hepatitis C virus genotype 3a NS5B by surface plasmon resonance analysis
|
Hepatitis C virus subtype 3a
|
6.1
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Binding affinity to Hepatitis C virus genotype 2b NS5B by surface plasmon resonance analysis
|
Hepatitis C virus subtype 2b
|
880.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Binding affinity to Hepatitis C virus genotype 1b NS5B by surface plasmon resonance analysis
|
Hepatitis C virus subtype 1b
|
3.9
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Binding affinity to Hepatitis C virus genotype 1a NS5B by surface plasmon resonance analysis
|
Hepatitis C virus subtype 1a
|
7.3
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Binding affinity to Hepatitis C virus Con 1b wild-type NS5B by surface plasmon resonance analysis
|
Hepatitis C virus (isolate Con1)
|
4.1
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Antiviral activity against Hepatitis C virus genotype 1a infected in human HuH7-SG cells after 3 days by RT-PCR analysis
|
Hepatitis C virus subtype 1a
|
166.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Inhibition of His6-tagged Hepatitis C virus Con 1b NS5B delta21 RNA dependent RNA polymerase expressed in Escherichia coli Rosetta 2 (DE3) after 2 hrs by surface plasmon resonance analysis in presence of 5'-biotinylated rG13 primer
|
Hepatitis C virus (isolate Con1)
|
34.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Binding affinity to His6-tagged Hepatitis C virus Con 1b NS5B delta21 RNA dependent RNA polymerase expressed in Escherichia coli Rosetta 2 (DE3) by surface plasmon resonance analysis
|
Hepatitis C virus (isolate Con1)
|
4.1
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Antiviral activity against Hepatitis C virus genotype 1b infected in human HuH7 cells after 72 hrs by luciferase reporter gene assay
|
Hepatitis C virus subtype 1b
|
77.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery and early development of TMC647055, a non-nucleoside inhibitor of the hepatitis C virus NS5B polymerase.
Year : 2014
Volume : 57
Issue : 5
First Page : 1880
Last Page : 1892
Authors : Cummings MD, Lin TI, Hu L, Tahri A, McGowan D, Amssoms K, Last S, Devogelaere B, Rouan MC, Vijgen L, Berke JM, Dehertogh P, Fransen E, Cleiren E, van der Helm L, Fanning G, Nyanguile O, Simmen K, Van Remoortere P, Raboisson P, Vendeville S.
Abstract : Structure-based macrocyclization of a 6-carboxylic acid indole chemotype has yielded potent and selective finger-loop inhibitors of the hepatitis C virus (HCV) NS5B polymerase. Lead optimization in conjunction with in vivo evaluation in rats identified several compounds showing (i) nanomolar potency in HCV replicon cells, (ii) limited toxicity and off-target activities, and (iii) encouraging preclinical pharmacokinetic profiles characterized by high liver distribution. This effort culminated in the identification of TMC647055 (10a), a nonzwitterionic 17-membered-ring macrocycle characterized by high affinity, long polymerase residence time, and broad genotypic coverage. In vitro results of the combination of 10a with the HCV protease inhibitor TMC435 (simeprevir) supported an evaluation of this combination in patients with regard to virus suppression and resistance emergence. In a phase 1b trial with HCV genotype 1-infected patients, 10a was considered to be safe and well-tolerated and demonstrated potent antiviral activity, which was further enhanced in a combination study with TMC435.
Replicon Assay: The assay utilized the stably transfected cell line Huh-7 luc/neo (hereafter referred to as Huh-Luc). This cell line harbors an RNA encoding a bicistronic expression construct comprising the wild type NS3-NS5B regions of HCV type 1b translated from an Internal Ribosome Entry Site (IRES) from encephalomyocarditis virus (EMCV), preceded by a reporter portion (FfL-luciferase), and a selectable marker portion (neoR, neomycine phosphotransferase). The construct is bordered by 5' and 3' NTRs (non-translated regions) from HCV type 1b. Continued culture of the replicon cells in the presence of G418 (neoR) is dependent on the replication of the HCV RNA. The stably transfected replicon cells that express HCV RNA, which replicates autonomously and to high levels, encoding inter alia luciferase, are used for screening the antiviral compounds. The replicon cells were plated in 384 well plates in the presence of the test and control compounds which were added in various concentrations. Following an incubation of three days, HCV replication was measured by assaying luciferase activity (using standard luciferase assay substrates and reagents and a Perkin Elmer ViewLux™ ultraHTS microplate imager). Replicon cells in the control cultures have high luciferase expression in the absence of any inhibitor.
|
None
|
70.0
nM
|
|
Title : Macrocyclic indole derivatives useful as hepatitis C virus inhibitors
Year : 2016
Inhibition Assay: Measurement of HCV NS5B polymerization activity was performed by evaluating the amount of radiolabeled GTP incorporated by the enzyme in a newly synthesized RNA using heteropolymeric RNA template/primer. The RdRp assay was carried out in 384-well plates using 50 nM of purified NS5B enzyme, which was incubated with 300 nM 5'-biotinylated oligo(rG13)/poly(rC) or oligo (rU15)/poly(rA) primer-template, 600 nM of GTP, and 0.1 μCi of [3H]GTP or [3H]UTP in 25 mM Tris-HCl, pH 7.5, 5 mM MgCl2, 25 mM KCl, 17 mM NaCl and 3 mM of DTT. The 30 μL reaction mixture was incubated at room temperature for 2 h before stopping the reaction by adding 30 μL of streptavidin coated SPA-beads (GE Healthcare, Uppsala, Sweden) in 0.5 M EDTA. The 30 μL reaction was terminated after 2 hours at 25° C. upon addition of 30 μl streptavidin-coated SPA beads (GE Healthcare, Uppsala, Sweden 5 mg/ml in 0.5 M EDTA). After incubation at 25° C. for 30 min, the plate was counted using a Packard TopCount microplate reader (30 sec/well, 1 min count delay) and IC50 values were calculated (Table 1: IC50 1bJ4).
|
None
|
240.0
nM
|
|
Title : Macrocyclic indole derivatives useful as hepatitis C virus inhibitors
Year : 2016
Primer-Dependent Transcription Assay: IC50 con1b were determined according to the method as described previously (Pauwels et al, 2007, J Virol 81:6909-19) using a primer-dependent transcription assay. Following a 10 minute preincubation with the inhibitor, 20 nM of purified Con1b NS5B enzyme was incubated for 10 min. with 150 nM 5′-biotinylated oligo (rG13) primer, 15 nM poly(rC) template, 19 mM Tris-HCl, 5 mM MgCl2, 17 mM NaCl, 21 mM KCl, and 2.5 mM DTT. 600 nM GTP and 0.13 μCi of [3H]GTP was then added to initiate the 40-μl reaction mixture, which was then incubated at room temperature for 2 h before the reaction was stopped by addition of 40-μl streptavidin-coated SPA beads.
|
None
|
38.0
nM
|
|
Title : Macrocyclic indole derivatives useful as hepatitis C virus inhibitors
Year : 2016
Surface Plasmon Resonance (SPR)-Based Assay: All measurements were performed on a Biacore T100 instrument (GE Healthcare). The purified HIS6-tagged NS5BΔC21 polymerases were immobilized using non-covalent capturing to an NTA sensor chip (GE Healthcare) in immobilization buffer (20 mM MOPS pH 7.4, 500 mM NaCl, 0.005% Tween-P20, 1 mM DTT, 50 μM EDTA). Interaction studies were all performed at 25° C. Inhibitors were serially diluted in running buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 50 μM EDTA, 1 mM DTT, 0.005% Tween-P20) containing 5% dimethyl sulfoxide (DMSO). Single-cycle kinetics were used, in which 5 increasing concentrations of compound were injected for a period of 300 s each in 1 single cycle, and dissociation was monitored for a period of 1200 s. The sensor surface was completely regenerated in between the cycles.
|
None
|
4.4
nM
|
|
Surface Plasmon Resonance (SPR)-Based Assay: All measurements were performed on a Biacore T100 instrument (GE Healthcare). The purified HIS6-tagged NS5BΔC21 polymerases were immobilized using non-covalent capturing to an NTA sensor chip (GE Healthcare) in immobilization buffer (20 mM MOPS pH 7.4, 500 mM NaCl, 0.005% Tween-P20, 1 mM DTT, 50 μM EDTA). Interaction studies were all performed at 25° C. Inhibitors were serially diluted in running buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 50 μM EDTA, 1 mM DTT, 0.005% Tween-P20) containing 5% dimethyl sulfoxide (DMSO). Single-cycle kinetics were used, in which 5 increasing concentrations of compound were injected for a period of 300 s each in 1 single cycle, and dissociation was monitored for a period of 1200 s. The sensor surface was completely regenerated in between the cycles.
|
None
|
4.4
nM
|
|
Title : Macrocyclic indole derivatives useful as hepatitis C virus inhibitors
Year : 2016
Surface Plasmon Resonance (SPR)-Based Assay: All measurements were performed on a Biacore T100 instrument (GE Healthcare). The purified HIS6-tagged NS5BΔC21 polymerases were immobilized using non-covalent capturing to an NTA sensor chip (GE Healthcare) in immobilization buffer (20 mM MOPS pH 7.4, 500 mM NaCl, 0.005% Tween-P20, 1 mM DTT, 50 μM EDTA). Interaction studies were all performed at 25° C. Inhibitors were serially diluted in running buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 50 μM EDTA, 1 mM DTT, 0.005% Tween-P20) containing 5% dimethyl sulfoxide (DMSO). Single-cycle kinetics were used, in which 5 increasing concentrations of compound were injected for a period of 300 s each in 1 single cycle, and dissociation was monitored for a period of 1200 s. The sensor surface was completely regenerated in between the cycles.
|
None
|
5.2
nM
|
|
Title : Macrocyclic indole derivatives useful as hepatitis C virus inhibitors
Year : 2016
Surface Plasmon Resonance (SPR)-Based Assay: All measurements were performed on a Biacore T100 instrument (GE Healthcare). The purified HIS6-tagged NS5BΔC21 polymerases were immobilized using non-covalent capturing to an NTA sensor chip (GE Healthcare) in immobilization buffer (20 mM MOPS pH 7.4, 500 mM NaCl, 0.005% Tween-P20, 1 mM DTT, 50 μM EDTA). Interaction studies were all performed at 25° C. Inhibitors were serially diluted in running buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 50 μM EDTA, 1 mM DTT, 0.005% Tween-P20) containing 5% dimethyl sulfoxide (DMSO). Single-cycle kinetics were used, in which 5 increasing concentrations of compound were injected for a period of 300 s each in 1 single cycle, and dissociation was monitored for a period of 1200 s. The sensor surface was completely regenerated in between the cycles.
|
None
|
5.9
nM
|
|
Title : Macrocyclic indole derivatives useful as hepatitis C virus inhibitors
Year : 2016
Surface Plasmon Resonance (SPR)-Based Assay: All measurements were performed on a Biacore T100 instrument (GE Healthcare). The purified HIS6-tagged NS5BΔC21 polymerases were immobilized using non-covalent capturing to an NTA sensor chip (GE Healthcare) in immobilization buffer (20 mM MOPS pH 7.4, 500 mM NaCl, 0.005% Tween-P20, 1 mM DTT, 50 μM EDTA). Interaction studies were all performed at 25° C. Inhibitors were serially diluted in running buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 50 μM EDTA, 1 mM DTT, 0.005% Tween-P20) containing 5% dimethyl sulfoxide (DMSO). Single-cycle kinetics were used, in which 5 increasing concentrations of compound were injected for a period of 300 s each in 1 single cycle, and dissociation was monitored for a period of 1200 s. The sensor surface was completely regenerated in between the cycles.
|
None
|
6.3
nM
|
|
Title : Macrocyclic indole derivatives useful as hepatitis C virus inhibitors
Year : 2016
Surface Plasmon Resonance (SPR)-Based Assay: All measurements were performed on a Biacore T100 instrument (GE Healthcare). The purified HIS6-tagged NS5BΔC21 polymerases were immobilized using non-covalent capturing to an NTA sensor chip (GE Healthcare) in immobilization buffer (20 mM MOPS pH 7.4, 500 mM NaCl, 0.005% Tween-P20, 1 mM DTT, 50 μM EDTA). Interaction studies were all performed at 25° C. Inhibitors were serially diluted in running buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 50 μM EDTA, 1 mM DTT, 0.005% Tween-P20) containing 5% dimethyl sulfoxide (DMSO). Single-cycle kinetics were used, in which 5 increasing concentrations of compound were injected for a period of 300 s each in 1 single cycle, and dissociation was monitored for a period of 1200 s. The sensor surface was completely regenerated in between the cycles.
|
None
|
3.9
nM
|
|
Title : Macrocyclic indole derivatives useful as hepatitis C virus inhibitors
Year : 2016
Surface Plasmon Resonance (SPR)-Based Assay: All measurements were performed on a Biacore T100 instrument (GE Healthcare). The purified HIS6-tagged NS5BΔC21 polymerases were immobilized using non-covalent capturing to an NTA sensor chip (GE Healthcare) in immobilization buffer (20 mM MOPS pH 7.4, 500 mM NaCl, 0.005% Tween-P20, 1 mM DTT, 50 μM EDTA). Interaction studies were all performed at 25° C. Inhibitors were serially diluted in running buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 50 μM EDTA, 1 mM DTT, 0.005% Tween-P20) containing 5% dimethyl sulfoxide (DMSO). Single-cycle kinetics were used, in which 5 increasing concentrations of compound were injected for a period of 300 s each in 1 single cycle, and dissociation was monitored for a period of 1200 s. The sensor surface was completely regenerated in between the cycles.
|
None
|
2.2
nM
|
|
Title : Macrocyclic indole derivatives useful as hepatitis C virus inhibitors
Year : 2016
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of Caco-2 cells at 10 uM after 48 hours by high content imaging
|
Homo sapiens
|
-3.67
%
|
|
Title : Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection
Year : 2020
Authors : Bernhard Ellinger, Denisa Bojkova, Andrea Zaliani, Jindrich Cinatl, Carsten Claussen, Sandra Westhaus, Jeanette Reinshagen, Maria Kuzikov, Markus Wolf, Gerd Geisslinger, Philip Gribbon, Sandra Ciesek
Abstract : To identify possible candidates for progression towards clinical studies against SARS-CoV-2, we screened a well-defined collection of 5632 compounds including 3488 compounds which have undergone clinical investigations (marketed drugs, phases 1 -3, and withdrawn) across 600 indications. Compounds were screened for their inhibition of viral induced cytotoxicity using the human epithelial colorectal adenocarcinoma cell line Caco-2 and a SARS-CoV-2 isolate. The primary screen of 5632 compounds gave 271 hits. A total of 64 compounds with IC50 <20 µM were identified, including 19 compounds with IC50 < 1 µM. Of this confirmed hit population, 90% have not yet been previously reported as active against SARS-CoV-2 in-vitro cell assays. Some 37 of the actives are launched drugs, 19 are in phases 1-3 and 10 pre-clinical. Several inhibitors were associated with modulation of host pathways including kinase signaling P53 activation, ubiquitin pathways and PDE activity modulation, with long chain acyl transferases were effective viral inhibitors.
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
15.14
%
|
|
Title : Identification of inhibitors of SARS-Cov2 M-Pro enzymatic activity using a small molecule repurposing screen
Year : 2020
Authors : Maria Kuzikov, Elisa Costanzi, Jeanette Reinshagen, Francesca Esposito, Laura Vangeel, Markus Wolf, Bernhard Ellinger, Carsten Claussen, Gerd Geisslinger, Angela Corona, Daniela Iaconis, Carmine Talarico, Candida Manelfi, Rolando Cannalire, Giulia Rossetti, Jonas Gossen, Simone Albani, Francesco Musiani, Katja Herzog, Yang Ye, Barbara Giabbai, Nicola Demitri, Dirk Jochmans, Steven De Jonghe, Jasper Rymenants, Vincenzo Summa, Enzo Tramontano, Andrea R. Beccari, Pieter Leyssen, Paola Storici, Johan Neyts, Philip Gribbon, and Andrea Zaliani
Abstract : Compound repurposing is an important strategy being pursued in the identification of effective treatment against the SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (M-Pro), also termed 3CL-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyprotein into 11 non-structural proteins. We report the results of a screening campaign involving ca 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and chemicals regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, but we have also identified 68 compounds with IC50 lower than 1 uM and 127 compounds with IC50 lower than 5 uM. Profiling showed 67% of confirmed hits were selective (> 5 fold) against other Cys- and Ser- proteases (Chymotrypsin and Cathepsin-L) and MERS 3CL-Pro. Selected compounds were also analysed in their binding characteristics.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
0.66
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
0.66
%
|
|
Title : Cytopathic SARS-Cov2 screening on VERO-E6 cells in a large repurposing effort
Year : 2020
Authors : Andrea Zaliani, Laura Vangeel, Jeanette Reinshagen, Daniela Iaconis, Maria Kuzikov, Oliver Keminer, Markus Wolf, Bernhard Ellinger, Francesca Esposito, Angela Corona, Enzo Tramontano, Candida Manelfi, Katja Herzog, Dirk Jochmans, Steven De Jonghe, Winston Chiu, Thibault Francken, Joost Schepers, Caroline Collard, Kayvan Abbasi, Carsten Claussen , Vincenzo Summa, Andrea R. Beccari, Johan Neyts, Philip Gribbon and Pieter Leyssen
Abstract : Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.
Antiviral activity against HCV
|
Hepatitis C virus
|
82.0
nM
|
|
Journal : Eur J Med Chem
Title : A review on HCV inhibitors: Significance of non-structural polyproteins.
Year : 2019
Volume : 164
First Page : 576
Last Page : 601
Authors : Ganta NM, Gedda G, Rathnakar B, Satyanarayana M, Yamajala B, Ahsan MJ, Jadav SS, Balaraju T.
Abstract : Hepatitis C virus (HCV) mortality and morbidity is a world health misery with an approximate 130-150 million chronically HCV tainted and suffering individuals and it initiate critical liver malfunction like cirrhosis, hepatocellular carcinoma or liver HCV cancer. HCV NS5B protein one of the best studied therapeutic target for the identification of new drug candidates to be added to the combination or multiple combination medication recently approved. During the past few years, NS5B has thus been an important object of attractive medicinal chemistry endeavors, which induced to the surfacing of betrothal preclinical drug molecules. In this scenario, the current review set limit to discuss research published on NS5B and few other therapeutic functional inhibitors concentrating on hit investigation, hit to lead optimization, ADME parameters evaluation, and the SAR data which was out for each compound type and similarity taken into consideration. The discussion outlined in this specific review will surly helpful and vital tool for those medicinal chemists investigators working with HCV research programs mainly pointing on NS5B and set broad spectrum identification of creative anti HCV compounds. This mini review also tells each and every individual compound ability related how much they are active against NS5B and few other targets.