Inhibition of CDK2/Cyclin A
|
None
|
45.0
nM
|
|
Journal : J. Med. Chem.
Title : Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.
Year : 2009
Volume : 52
Issue : 16
First Page : 5152
Last Page : 5163
Authors : Brasca MG, Amboldi N, Ballinari D, Cameron A, Casale E, Cervi G, Colombo M, Colotta F, Croci V, D'Alessio R, Fiorentini F, Isacchi A, Mercurio C, Moretti W, Panzeri A, Pastori W, Pevarello P, Quartieri F, Roletto F, Traquandi G, Vianello P, Vulpetti A, Ciomei M.
Abstract : The discovery of a novel class of inhibitors of cyclin dependent kinases (CDKs) is described. Starting from compound 1, showing good potency as inhibitor of CDKs but being poorly selective against a panel of serine-threonine and tyrosine kinases, new analogues were synthesized. Enhancement in selectivity, antiproliferative activity against A2780 human ovarian carcinoma cells, and optimization of the physical properties and pharmacokinetic profile led to the identification of highly potent and orally available compounds. Compound 28 (PHA-848125), which in the preclinical xenograft A2780 human ovarian carcinoma model showed good efficacy and was well tolerated upon repeated daily treatments, was identified as a drug candidate for further development. Compound 28 is currently undergoing phase I and phase II clinical trials.
Antiproliferative activity against human A2780 cells after 72 hrs by cell Titer_Glo assay
|
Homo sapiens
|
200.0
nM
|
|
Journal : J. Med. Chem.
Title : Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.
Year : 2009
Volume : 52
Issue : 16
First Page : 5152
Last Page : 5163
Authors : Brasca MG, Amboldi N, Ballinari D, Cameron A, Casale E, Cervi G, Colombo M, Colotta F, Croci V, D'Alessio R, Fiorentini F, Isacchi A, Mercurio C, Moretti W, Panzeri A, Pastori W, Pevarello P, Quartieri F, Roletto F, Traquandi G, Vianello P, Vulpetti A, Ciomei M.
Abstract : The discovery of a novel class of inhibitors of cyclin dependent kinases (CDKs) is described. Starting from compound 1, showing good potency as inhibitor of CDKs but being poorly selective against a panel of serine-threonine and tyrosine kinases, new analogues were synthesized. Enhancement in selectivity, antiproliferative activity against A2780 human ovarian carcinoma cells, and optimization of the physical properties and pharmacokinetic profile led to the identification of highly potent and orally available compounds. Compound 28 (PHA-848125), which in the preclinical xenograft A2780 human ovarian carcinoma model showed good efficacy and was well tolerated upon repeated daily treatments, was identified as a drug candidate for further development. Compound 28 is currently undergoing phase I and phase II clinical trials.
Inhibition of CDK4/Cyclin D1
|
None
|
160.0
nM
|
|
Journal : J. Med. Chem.
Title : Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.
Year : 2009
Volume : 52
Issue : 16
First Page : 5152
Last Page : 5163
Authors : Brasca MG, Amboldi N, Ballinari D, Cameron A, Casale E, Cervi G, Colombo M, Colotta F, Croci V, D'Alessio R, Fiorentini F, Isacchi A, Mercurio C, Moretti W, Panzeri A, Pastori W, Pevarello P, Quartieri F, Roletto F, Traquandi G, Vianello P, Vulpetti A, Ciomei M.
Abstract : The discovery of a novel class of inhibitors of cyclin dependent kinases (CDKs) is described. Starting from compound 1, showing good potency as inhibitor of CDKs but being poorly selective against a panel of serine-threonine and tyrosine kinases, new analogues were synthesized. Enhancement in selectivity, antiproliferative activity against A2780 human ovarian carcinoma cells, and optimization of the physical properties and pharmacokinetic profile led to the identification of highly potent and orally available compounds. Compound 28 (PHA-848125), which in the preclinical xenograft A2780 human ovarian carcinoma model showed good efficacy and was well tolerated upon repeated daily treatments, was identified as a drug candidate for further development. Compound 28 is currently undergoing phase I and phase II clinical trials.
Inhibition of CDK5/p35
|
None
|
265.0
nM
|
|
Journal : J. Med. Chem.
Title : Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.
Year : 2009
Volume : 52
Issue : 16
First Page : 5152
Last Page : 5163
Authors : Brasca MG, Amboldi N, Ballinari D, Cameron A, Casale E, Cervi G, Colombo M, Colotta F, Croci V, D'Alessio R, Fiorentini F, Isacchi A, Mercurio C, Moretti W, Panzeri A, Pastori W, Pevarello P, Quartieri F, Roletto F, Traquandi G, Vianello P, Vulpetti A, Ciomei M.
Abstract : The discovery of a novel class of inhibitors of cyclin dependent kinases (CDKs) is described. Starting from compound 1, showing good potency as inhibitor of CDKs but being poorly selective against a panel of serine-threonine and tyrosine kinases, new analogues were synthesized. Enhancement in selectivity, antiproliferative activity against A2780 human ovarian carcinoma cells, and optimization of the physical properties and pharmacokinetic profile led to the identification of highly potent and orally available compounds. Compound 28 (PHA-848125), which in the preclinical xenograft A2780 human ovarian carcinoma model showed good efficacy and was well tolerated upon repeated daily treatments, was identified as a drug candidate for further development. Compound 28 is currently undergoing phase I and phase II clinical trials.
Inhibition of CDK2/Cyclin E
|
None
|
363.0
nM
|
|
Journal : J. Med. Chem.
Title : Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.
Year : 2009
Volume : 52
Issue : 16
First Page : 5152
Last Page : 5163
Authors : Brasca MG, Amboldi N, Ballinari D, Cameron A, Casale E, Cervi G, Colombo M, Colotta F, Croci V, D'Alessio R, Fiorentini F, Isacchi A, Mercurio C, Moretti W, Panzeri A, Pastori W, Pevarello P, Quartieri F, Roletto F, Traquandi G, Vianello P, Vulpetti A, Ciomei M.
Abstract : The discovery of a novel class of inhibitors of cyclin dependent kinases (CDKs) is described. Starting from compound 1, showing good potency as inhibitor of CDKs but being poorly selective against a panel of serine-threonine and tyrosine kinases, new analogues were synthesized. Enhancement in selectivity, antiproliferative activity against A2780 human ovarian carcinoma cells, and optimization of the physical properties and pharmacokinetic profile led to the identification of highly potent and orally available compounds. Compound 28 (PHA-848125), which in the preclinical xenograft A2780 human ovarian carcinoma model showed good efficacy and was well tolerated upon repeated daily treatments, was identified as a drug candidate for further development. Compound 28 is currently undergoing phase I and phase II clinical trials.
Inhibition of CDK1/Cyclin B
|
None
|
398.0
nM
|
|
Journal : J. Med. Chem.
Title : Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.
Year : 2009
Volume : 52
Issue : 16
First Page : 5152
Last Page : 5163
Authors : Brasca MG, Amboldi N, Ballinari D, Cameron A, Casale E, Cervi G, Colombo M, Colotta F, Croci V, D'Alessio R, Fiorentini F, Isacchi A, Mercurio C, Moretti W, Panzeri A, Pastori W, Pevarello P, Quartieri F, Roletto F, Traquandi G, Vianello P, Vulpetti A, Ciomei M.
Abstract : The discovery of a novel class of inhibitors of cyclin dependent kinases (CDKs) is described. Starting from compound 1, showing good potency as inhibitor of CDKs but being poorly selective against a panel of serine-threonine and tyrosine kinases, new analogues were synthesized. Enhancement in selectivity, antiproliferative activity against A2780 human ovarian carcinoma cells, and optimization of the physical properties and pharmacokinetic profile led to the identification of highly potent and orally available compounds. Compound 28 (PHA-848125), which in the preclinical xenograft A2780 human ovarian carcinoma model showed good efficacy and was well tolerated upon repeated daily treatments, was identified as a drug candidate for further development. Compound 28 is currently undergoing phase I and phase II clinical trials.
Inhibition of CDK7/Cyclin H
|
None
|
150.0
nM
|
|
Journal : J. Med. Chem.
Title : Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.
Year : 2009
Volume : 52
Issue : 16
First Page : 5152
Last Page : 5163
Authors : Brasca MG, Amboldi N, Ballinari D, Cameron A, Casale E, Cervi G, Colombo M, Colotta F, Croci V, D'Alessio R, Fiorentini F, Isacchi A, Mercurio C, Moretti W, Panzeri A, Pastori W, Pevarello P, Quartieri F, Roletto F, Traquandi G, Vianello P, Vulpetti A, Ciomei M.
Abstract : The discovery of a novel class of inhibitors of cyclin dependent kinases (CDKs) is described. Starting from compound 1, showing good potency as inhibitor of CDKs but being poorly selective against a panel of serine-threonine and tyrosine kinases, new analogues were synthesized. Enhancement in selectivity, antiproliferative activity against A2780 human ovarian carcinoma cells, and optimization of the physical properties and pharmacokinetic profile led to the identification of highly potent and orally available compounds. Compound 28 (PHA-848125), which in the preclinical xenograft A2780 human ovarian carcinoma model showed good efficacy and was well tolerated upon repeated daily treatments, was identified as a drug candidate for further development. Compound 28 is currently undergoing phase I and phase II clinical trials.
Inhibition of TRKA
|
None
|
53.0
nM
|
|
Journal : J. Med. Chem.
Title : Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.
Year : 2009
Volume : 52
Issue : 16
First Page : 5152
Last Page : 5163
Authors : Brasca MG, Amboldi N, Ballinari D, Cameron A, Casale E, Cervi G, Colombo M, Colotta F, Croci V, D'Alessio R, Fiorentini F, Isacchi A, Mercurio C, Moretti W, Panzeri A, Pastori W, Pevarello P, Quartieri F, Roletto F, Traquandi G, Vianello P, Vulpetti A, Ciomei M.
Abstract : The discovery of a novel class of inhibitors of cyclin dependent kinases (CDKs) is described. Starting from compound 1, showing good potency as inhibitor of CDKs but being poorly selective against a panel of serine-threonine and tyrosine kinases, new analogues were synthesized. Enhancement in selectivity, antiproliferative activity against A2780 human ovarian carcinoma cells, and optimization of the physical properties and pharmacokinetic profile led to the identification of highly potent and orally available compounds. Compound 28 (PHA-848125), which in the preclinical xenograft A2780 human ovarian carcinoma model showed good efficacy and was well tolerated upon repeated daily treatments, was identified as a drug candidate for further development. Compound 28 is currently undergoing phase I and phase II clinical trials.
Inhibition of LCK
|
None
|
209.0
nM
|
|
Journal : J. Med. Chem.
Title : Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.
Year : 2009
Volume : 52
Issue : 16
First Page : 5152
Last Page : 5163
Authors : Brasca MG, Amboldi N, Ballinari D, Cameron A, Casale E, Cervi G, Colombo M, Colotta F, Croci V, D'Alessio R, Fiorentini F, Isacchi A, Mercurio C, Moretti W, Panzeri A, Pastori W, Pevarello P, Quartieri F, Roletto F, Traquandi G, Vianello P, Vulpetti A, Ciomei M.
Abstract : The discovery of a novel class of inhibitors of cyclin dependent kinases (CDKs) is described. Starting from compound 1, showing good potency as inhibitor of CDKs but being poorly selective against a panel of serine-threonine and tyrosine kinases, new analogues were synthesized. Enhancement in selectivity, antiproliferative activity against A2780 human ovarian carcinoma cells, and optimization of the physical properties and pharmacokinetic profile led to the identification of highly potent and orally available compounds. Compound 28 (PHA-848125), which in the preclinical xenograft A2780 human ovarian carcinoma model showed good efficacy and was well tolerated upon repeated daily treatments, was identified as a drug candidate for further development. Compound 28 is currently undergoing phase I and phase II clinical trials.
Inhibition of c-ABL
|
None
|
478.0
nM
|
|
Journal : J. Med. Chem.
Title : Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.
Year : 2009
Volume : 52
Issue : 16
First Page : 5152
Last Page : 5163
Authors : Brasca MG, Amboldi N, Ballinari D, Cameron A, Casale E, Cervi G, Colombo M, Colotta F, Croci V, D'Alessio R, Fiorentini F, Isacchi A, Mercurio C, Moretti W, Panzeri A, Pastori W, Pevarello P, Quartieri F, Roletto F, Traquandi G, Vianello P, Vulpetti A, Ciomei M.
Abstract : The discovery of a novel class of inhibitors of cyclin dependent kinases (CDKs) is described. Starting from compound 1, showing good potency as inhibitor of CDKs but being poorly selective against a panel of serine-threonine and tyrosine kinases, new analogues were synthesized. Enhancement in selectivity, antiproliferative activity against A2780 human ovarian carcinoma cells, and optimization of the physical properties and pharmacokinetic profile led to the identification of highly potent and orally available compounds. Compound 28 (PHA-848125), which in the preclinical xenograft A2780 human ovarian carcinoma model showed good efficacy and was well tolerated upon repeated daily treatments, was identified as a drug candidate for further development. Compound 28 is currently undergoing phase I and phase II clinical trials.
Inhibition of PDGFR
|
None
|
579.0
nM
|
|
Journal : J. Med. Chem.
Title : Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.
Year : 2009
Volume : 52
Issue : 16
First Page : 5152
Last Page : 5163
Authors : Brasca MG, Amboldi N, Ballinari D, Cameron A, Casale E, Cervi G, Colombo M, Colotta F, Croci V, D'Alessio R, Fiorentini F, Isacchi A, Mercurio C, Moretti W, Panzeri A, Pastori W, Pevarello P, Quartieri F, Roletto F, Traquandi G, Vianello P, Vulpetti A, Ciomei M.
Abstract : The discovery of a novel class of inhibitors of cyclin dependent kinases (CDKs) is described. Starting from compound 1, showing good potency as inhibitor of CDKs but being poorly selective against a panel of serine-threonine and tyrosine kinases, new analogues were synthesized. Enhancement in selectivity, antiproliferative activity against A2780 human ovarian carcinoma cells, and optimization of the physical properties and pharmacokinetic profile led to the identification of highly potent and orally available compounds. Compound 28 (PHA-848125), which in the preclinical xenograft A2780 human ovarian carcinoma model showed good efficacy and was well tolerated upon repeated daily treatments, was identified as a drug candidate for further development. Compound 28 is currently undergoing phase I and phase II clinical trials.
Inhibition of C-KIT
|
None
|
668.0
nM
|
|
Journal : J. Med. Chem.
Title : Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.
Year : 2009
Volume : 52
Issue : 16
First Page : 5152
Last Page : 5163
Authors : Brasca MG, Amboldi N, Ballinari D, Cameron A, Casale E, Cervi G, Colombo M, Colotta F, Croci V, D'Alessio R, Fiorentini F, Isacchi A, Mercurio C, Moretti W, Panzeri A, Pastori W, Pevarello P, Quartieri F, Roletto F, Traquandi G, Vianello P, Vulpetti A, Ciomei M.
Abstract : The discovery of a novel class of inhibitors of cyclin dependent kinases (CDKs) is described. Starting from compound 1, showing good potency as inhibitor of CDKs but being poorly selective against a panel of serine-threonine and tyrosine kinases, new analogues were synthesized. Enhancement in selectivity, antiproliferative activity against A2780 human ovarian carcinoma cells, and optimization of the physical properties and pharmacokinetic profile led to the identification of highly potent and orally available compounds. Compound 28 (PHA-848125), which in the preclinical xenograft A2780 human ovarian carcinoma model showed good efficacy and was well tolerated upon repeated daily treatments, was identified as a drug candidate for further development. Compound 28 is currently undergoing phase I and phase II clinical trials.
Inhibition of VEGFR3
|
None
|
920.0
nM
|
|
Journal : J. Med. Chem.
Title : Identification of N,1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor.
Year : 2009
Volume : 52
Issue : 16
First Page : 5152
Last Page : 5163
Authors : Brasca MG, Amboldi N, Ballinari D, Cameron A, Casale E, Cervi G, Colombo M, Colotta F, Croci V, D'Alessio R, Fiorentini F, Isacchi A, Mercurio C, Moretti W, Panzeri A, Pastori W, Pevarello P, Quartieri F, Roletto F, Traquandi G, Vianello P, Vulpetti A, Ciomei M.
Abstract : The discovery of a novel class of inhibitors of cyclin dependent kinases (CDKs) is described. Starting from compound 1, showing good potency as inhibitor of CDKs but being poorly selective against a panel of serine-threonine and tyrosine kinases, new analogues were synthesized. Enhancement in selectivity, antiproliferative activity against A2780 human ovarian carcinoma cells, and optimization of the physical properties and pharmacokinetic profile led to the identification of highly potent and orally available compounds. Compound 28 (PHA-848125), which in the preclinical xenograft A2780 human ovarian carcinoma model showed good efficacy and was well tolerated upon repeated daily treatments, was identified as a drug candidate for further development. Compound 28 is currently undergoing phase I and phase II clinical trials.
AntiTrypanosoma brucei activity T. b. brucei IC50 (uM)
|
Trypanosoma brucei
|
130.0
nM
|
|
Title : MMV Pathogen Box Bioactivity Data
Authors : Nathan group, Weill Cornell Medical College; Barry Lab, NIAID NIH; Winzeler lab, UCSD; Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Univ. of Antwerp; London School of Hygiene and Tropical Medicine; Parasite Chemotherapy Unit at Swiss Tropical and Public Health Institute; Huston group at the University of Vermont; Castellanos group at UTMB, Galveston, Texas; Sakanari Lab, Univ. of Calif. San Francisco; Townson (Simon) Lab, Imperial College London; Fidelis Cho-Ngwa Lab, University of Buea, Buea, Cameroon; Laboratory of Molecular Parasitology at the New York Blood Center; Bickle Lab, London School of Hygiene and Tropical Medicine; Keiser Lab, Swiss Tropical and Public Health Institute; Caffrey group at the Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego; University of Cape Town; Shanmugam group at CSIR-National Chemical Laboratory, Pune (India); Novartis Institute for Tropical Disease-Singapore; Abbvie
Abstract : The Pathogen Box contains 400 diverse, drug-like molecules active against neglected diseases of interest. This dataset contains biological activity confirmation data performed in the following disease areas: Tuberculosis, Malaria, Chagas disease, Leishmaniasis, Human African Trypanosomiasis, Cryptosporidiosis, Lymphatic Filariasis, Onchocerciasis, Schistosomiasis, Dengue, Chikungunya, Toxoplasmosis. For more information about the pathogen box, visit: https://www.pathogenbox.org
AntiTrypanosoma brucei activity T. b. rhodesiense IC50 (uM)
|
Trypanosoma brucei
|
130.0
nM
|
|
Title : MMV Pathogen Box Bioactivity Data
Authors : Nathan group, Weill Cornell Medical College; Barry Lab, NIAID NIH; Winzeler lab, UCSD; Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Univ. of Antwerp; London School of Hygiene and Tropical Medicine; Parasite Chemotherapy Unit at Swiss Tropical and Public Health Institute; Huston group at the University of Vermont; Castellanos group at UTMB, Galveston, Texas; Sakanari Lab, Univ. of Calif. San Francisco; Townson (Simon) Lab, Imperial College London; Fidelis Cho-Ngwa Lab, University of Buea, Buea, Cameroon; Laboratory of Molecular Parasitology at the New York Blood Center; Bickle Lab, London School of Hygiene and Tropical Medicine; Keiser Lab, Swiss Tropical and Public Health Institute; Caffrey group at the Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego; University of Cape Town; Shanmugam group at CSIR-National Chemical Laboratory, Pune (India); Novartis Institute for Tropical Disease-Singapore; Abbvie
Abstract : The Pathogen Box contains 400 diverse, drug-like molecules active against neglected diseases of interest. This dataset contains biological activity confirmation data performed in the following disease areas: Tuberculosis, Malaria, Chagas disease, Leishmaniasis, Human African Trypanosomiasis, Cryptosporidiosis, Lymphatic Filariasis, Onchocerciasis, Schistosomiasis, Dengue, Chikungunya, Toxoplasmosis. For more information about the pathogen box, visit: https://www.pathogenbox.org
AntiLeishmania activity L. infantum (macrophages) IC50 (uM)
|
Leishmania infantum
|
850.0
nM
|
|
Title : MMV Pathogen Box Bioactivity Data
Authors : Nathan group, Weill Cornell Medical College; Barry Lab, NIAID NIH; Winzeler lab, UCSD; Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Univ. of Antwerp; London School of Hygiene and Tropical Medicine; Parasite Chemotherapy Unit at Swiss Tropical and Public Health Institute; Huston group at the University of Vermont; Castellanos group at UTMB, Galveston, Texas; Sakanari Lab, Univ. of Calif. San Francisco; Townson (Simon) Lab, Imperial College London; Fidelis Cho-Ngwa Lab, University of Buea, Buea, Cameroon; Laboratory of Molecular Parasitology at the New York Blood Center; Bickle Lab, London School of Hygiene and Tropical Medicine; Keiser Lab, Swiss Tropical and Public Health Institute; Caffrey group at the Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego; University of Cape Town; Shanmugam group at CSIR-National Chemical Laboratory, Pune (India); Novartis Institute for Tropical Disease-Singapore; Abbvie
Abstract : The Pathogen Box contains 400 diverse, drug-like molecules active against neglected diseases of interest. This dataset contains biological activity confirmation data performed in the following disease areas: Tuberculosis, Malaria, Chagas disease, Leishmaniasis, Human African Trypanosomiasis, Cryptosporidiosis, Lymphatic Filariasis, Onchocerciasis, Schistosomiasis, Dengue, Chikungunya, Toxoplasmosis. For more information about the pathogen box, visit: https://www.pathogenbox.org
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
477.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
685.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
526.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
739.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
285.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
8.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
18.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
995.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
236.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
366.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
105.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
661.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
147.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
767.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
329.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
54.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
3.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
863.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
291.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
681.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
625.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
212.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
350.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
512.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
143.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
135.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
110.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
266.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
342.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
900.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
13.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Antiproliferative activity against human MDA-MB-231 cells measured after 72 hrs by CellTiter-Blue assay
|
Homo sapiens
|
310.0
nM
|
|
Journal : J Med Chem
Title : Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors.
Year : 2017
Volume : 60
Issue : 18
First Page : 7863
Last Page : 7875
Authors : Zhu JY, Cuellar RA, Berndt N, Lee HE, Olesen SH, Martin MP, Jensen JT, Georg GI, Schönbrunn E.
Abstract : Members of the Wee family of kinases negatively regulate the cell cycle via phosphorylation of CDK1 and are considered potential drug targets. Herein, we investigated the structure-function relationship of human Wee1, Wee2, and Myt1 (PKMYT1). Purified recombinant full-length proteins and kinase domain constructs differed substantially in phosphorylation states and catalytic competency, suggesting complex mechanisms of activation. A series of crystal structures reveal unique features that distinguish Wee1 and Wee2 from Myt1 and establish the structural basis of differential inhibition by the widely used Wee1 inhibitor MK-1775. Kinome profiling and cellular studies demonstrate that, in addition to Wee1 and Wee2, MK-1775 is an equally potent inhibitor of the polo-like kinase PLK1. Several previously unrecognized inhibitors of Wee kinases were discovered and characterized. Combined, the data provide a comprehensive view on the catalytic and structural properties of Wee kinases and a framework for the rational design of novel inhibitors thereof.
Antiproliferative activity against human MM1S cells measured after 72 hrs by CellTiter-Blue assay
|
Homo sapiens
|
720.0
nM
|
|
Journal : J Med Chem
Title : Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors.
Year : 2017
Volume : 60
Issue : 18
First Page : 7863
Last Page : 7875
Authors : Zhu JY, Cuellar RA, Berndt N, Lee HE, Olesen SH, Martin MP, Jensen JT, Georg GI, Schönbrunn E.
Abstract : Members of the Wee family of kinases negatively regulate the cell cycle via phosphorylation of CDK1 and are considered potential drug targets. Herein, we investigated the structure-function relationship of human Wee1, Wee2, and Myt1 (PKMYT1). Purified recombinant full-length proteins and kinase domain constructs differed substantially in phosphorylation states and catalytic competency, suggesting complex mechanisms of activation. A series of crystal structures reveal unique features that distinguish Wee1 and Wee2 from Myt1 and establish the structural basis of differential inhibition by the widely used Wee1 inhibitor MK-1775. Kinome profiling and cellular studies demonstrate that, in addition to Wee1 and Wee2, MK-1775 is an equally potent inhibitor of the polo-like kinase PLK1. Several previously unrecognized inhibitors of Wee kinases were discovered and characterized. Combined, the data provide a comprehensive view on the catalytic and structural properties of Wee kinases and a framework for the rational design of novel inhibitors thereof.
Binding affinity to recombinant human N-terminal His6-tagged Wee1 kinase domain (291 to 575 residues) expressed in Escherichia coli BL21 (DE3) by isothermal titration calorimetry
|
Homo sapiens
|
13.6
nM
|
|
Journal : J Med Chem
Title : Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors.
Year : 2017
Volume : 60
Issue : 18
First Page : 7863
Last Page : 7875
Authors : Zhu JY, Cuellar RA, Berndt N, Lee HE, Olesen SH, Martin MP, Jensen JT, Georg GI, Schönbrunn E.
Abstract : Members of the Wee family of kinases negatively regulate the cell cycle via phosphorylation of CDK1 and are considered potential drug targets. Herein, we investigated the structure-function relationship of human Wee1, Wee2, and Myt1 (PKMYT1). Purified recombinant full-length proteins and kinase domain constructs differed substantially in phosphorylation states and catalytic competency, suggesting complex mechanisms of activation. A series of crystal structures reveal unique features that distinguish Wee1 and Wee2 from Myt1 and establish the structural basis of differential inhibition by the widely used Wee1 inhibitor MK-1775. Kinome profiling and cellular studies demonstrate that, in addition to Wee1 and Wee2, MK-1775 is an equally potent inhibitor of the polo-like kinase PLK1. Several previously unrecognized inhibitors of Wee kinases were discovered and characterized. Combined, the data provide a comprehensive view on the catalytic and structural properties of Wee kinases and a framework for the rational design of novel inhibitors thereof.
Binding affinity to recombinant human N-terminal His6-tagged Wee2 kinase domain (202 to 492 residues) expressed in Escherichia coli BL21 (DE3) by isothermal titration calorimetry
|
Homo sapiens
|
26.6
nM
|
|
Journal : J Med Chem
Title : Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors.
Year : 2017
Volume : 60
Issue : 18
First Page : 7863
Last Page : 7875
Authors : Zhu JY, Cuellar RA, Berndt N, Lee HE, Olesen SH, Martin MP, Jensen JT, Georg GI, Schönbrunn E.
Abstract : Members of the Wee family of kinases negatively regulate the cell cycle via phosphorylation of CDK1 and are considered potential drug targets. Herein, we investigated the structure-function relationship of human Wee1, Wee2, and Myt1 (PKMYT1). Purified recombinant full-length proteins and kinase domain constructs differed substantially in phosphorylation states and catalytic competency, suggesting complex mechanisms of activation. A series of crystal structures reveal unique features that distinguish Wee1 and Wee2 from Myt1 and establish the structural basis of differential inhibition by the widely used Wee1 inhibitor MK-1775. Kinome profiling and cellular studies demonstrate that, in addition to Wee1 and Wee2, MK-1775 is an equally potent inhibitor of the polo-like kinase PLK1. Several previously unrecognized inhibitors of Wee kinases were discovered and characterized. Combined, the data provide a comprehensive view on the catalytic and structural properties of Wee kinases and a framework for the rational design of novel inhibitors thereof.
Binding affinity to recombinant human N-terminal His6-tagged Myt1 kinase domain (75 to 361 residues) by isothermal titration calorimetry
|
Homo sapiens
|
990.0
nM
|
|
Journal : J Med Chem
Title : Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors.
Year : 2017
Volume : 60
Issue : 18
First Page : 7863
Last Page : 7875
Authors : Zhu JY, Cuellar RA, Berndt N, Lee HE, Olesen SH, Martin MP, Jensen JT, Georg GI, Schönbrunn E.
Abstract : Members of the Wee family of kinases negatively regulate the cell cycle via phosphorylation of CDK1 and are considered potential drug targets. Herein, we investigated the structure-function relationship of human Wee1, Wee2, and Myt1 (PKMYT1). Purified recombinant full-length proteins and kinase domain constructs differed substantially in phosphorylation states and catalytic competency, suggesting complex mechanisms of activation. A series of crystal structures reveal unique features that distinguish Wee1 and Wee2 from Myt1 and establish the structural basis of differential inhibition by the widely used Wee1 inhibitor MK-1775. Kinome profiling and cellular studies demonstrate that, in addition to Wee1 and Wee2, MK-1775 is an equally potent inhibitor of the polo-like kinase PLK1. Several previously unrecognized inhibitors of Wee kinases were discovered and characterized. Combined, the data provide a comprehensive view on the catalytic and structural properties of Wee kinases and a framework for the rational design of novel inhibitors thereof.
Inhibition of CDK2 (unknown origin)
|
Homo sapiens
|
45.0
nM
|
|
Journal : Eur J Med Chem
Title : Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors.
Year : 2017
Volume : 142
First Page : 424
Last Page : 458
Authors : Kalra S, Joshi G, Munshi A, Kumar R.
Abstract : There are around 20 Cyclin-dependent kinases (CDKs) known till date, and various research groups have reported their role in different types of cancer. The X-ray structures of some CDKs especially CDK2 was exploited in the past few years, and several inhibitors have been found, e.g., flavopiridol, indirubicin, roscovitine, etc., but due to the specificity issues of these inhibitors (binding to all CDKs), these were called as pan inhibitors. The revolutionary outcome of palbociclib in 2015 as CDK4/6 inhibitor added a new charm to the specific inhibitor design for CDKs. Computer-aided drug design (CADD) tools added a benefit to the design and development of new CDK inhibitors by studying the binding pattern of the inhibitors to the ATP binding domain of CDKs. Herein, we have attempted a comparative analysis of structural differences between several CDKs ATP binding sites and their inhibitor specificity by depicting the important ligand-receptor interactions for a particular CDK to be targeted. This perspective provides futuristic implications in the design of inhibitors considering the spatial features and structural insights of the specific CDK.
Antibacterial activity against Staphylococcus aureus MRSA ATCC 43300 (CO-ADD:GP_020); MIC in CAMBH media, using NBS plates, by OD(600)
|
Staphylococcus aureus subsp. aureus
|
15.75
%
|
|
Antibacterial activity against Escherichia coli ATCC 25922 (CO-ADD:GN_001); MIC in CAMBH media using NBS plates, by OD(600)
|
Escherichia coli
|
10.4
%
|
|
Antibacterial activity against Klebsiella pneumoniae MDR ATCC 70063 (CO-ADD:GN_003); MIC in CAMBH media using NBS plates, by OD(600)
|
Klebsiella pneumoniae
|
-10.97
%
|
|
Antibacterial activity against Pseudomonas aeruginosa ATCC 27853 (CO-ADD:GN_042); MIC in CAMBH media using NBS plates, by OD(600)
|
Pseudomonas aeruginosa
|
5.97
%
|
|
Antibacterial activity against Acinetobacter baumannii ATCC 19606 (CO-ADD:GN_034); MIC in CAMBH media using NBS plates, by OD600
|
Acinetobacter baumannii
|
2.31
%
|
|
Antifungal activity against Candida albicans ATCC 90028 (CO-ADD:FG_001); MIC in YNB media using NBS plates, by OD630
|
Candida albicans
|
4.83
%
|
|
Antifungal activity against Cryptococcus neoformans H99 ATCC 208821 (CO-ADD:FG_002); MIC in YNB media using NBS plates, by Resazurin OD(600-570)
|
Cryptococcus neoformans
|
-4.76
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of Caco-2 cells at 10 uM after 48 hours by high content imaging
|
Homo sapiens
|
44.69
%
|
|
Title : Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection
Year : 2020
Authors : Bernhard Ellinger, Denisa Bojkova, Andrea Zaliani, Jindrich Cinatl, Carsten Claussen, Sandra Westhaus, Jeanette Reinshagen, Maria Kuzikov, Markus Wolf, Gerd Geisslinger, Philip Gribbon, Sandra Ciesek
Abstract : To identify possible candidates for progression towards clinical studies against SARS-CoV-2, we screened a well-defined collection of 5632 compounds including 3488 compounds which have undergone clinical investigations (marketed drugs, phases 1 -3, and withdrawn) across 600 indications. Compounds were screened for their inhibition of viral induced cytotoxicity using the human epithelial colorectal adenocarcinoma cell line Caco-2 and a SARS-CoV-2 isolate. The primary screen of 5632 compounds gave 271 hits. A total of 64 compounds with IC50 <20 µM were identified, including 19 compounds with IC50 < 1 µM. Of this confirmed hit population, 90% have not yet been previously reported as active against SARS-CoV-2 in-vitro cell assays. Some 37 of the actives are launched drugs, 19 are in phases 1-3 and 10 pre-clinical. Several inhibitors were associated with modulation of host pathways including kinase signaling P53 activation, ubiquitin pathways and PDE activity modulation, with long chain acyl transferases were effective viral inhibitors.
Inhibition of His-tagged CDK2/cyclin E (unknown origin) expressed in Baculovirus infected Sf9 cells using histone H1 as substrate in presence of [gamma-33P]-ATP by radiometric filter binding assay
|
Homo sapiens
|
590.0
nM
|
|
Journal : J Med Chem
Title : How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases?
Year : 2018
Volume : 61
Issue : 20
First Page : 9105
Last Page : 9120
Authors : Jorda R, Hendrychová D, Voller J, Řezníčková E, Gucký T, Kryštof V.
Abstract : Cyclin-dependent kinases (CDKs) are an important and emerging class of drug targets for which many small-molecule inhibitors have been developed. However, there is often insufficient data available on the selectivity of CDK inhibitors (CDKi) to attribute the effects on the presumed target CDK to these inhibitors. Here, we highlight discrepancies between the kinase selectivity of CDKi and the phenotype exhibited; we evaluated 31 CDKi (claimed to target CDK1-4) for activity toward CDKs 1, 2, 4, 5, 7, 9 and for effects on the cell cycle. Our results suggest that most CDKi should be reclassified as pan-selective and should not be used as a tool. In addition, some compounds did not even inhibit CDKs as their primary cellular targets; for example, NU6140 showed potent inhibition of Aurora kinases. We also established an online database of commercially available CDKi for critical evaluation of their utility as molecular probes. Our results should help researchers select the most relevant chemical tools for their specific applications.
Inhibition of GST-tagged CDK4/cyclin D1 (unknown origin) expressed in Baculovirus infected Sf9 cells using RPPTLSPIPHIPR peptide as substrate in presence of [gamma-33P]-ATP by radiometric filter binding assay
|
Homo sapiens
|
220.0
nM
|
|
Journal : J Med Chem
Title : How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases?
Year : 2018
Volume : 61
Issue : 20
First Page : 9105
Last Page : 9120
Authors : Jorda R, Hendrychová D, Voller J, Řezníčková E, Gucký T, Kryštof V.
Abstract : Cyclin-dependent kinases (CDKs) are an important and emerging class of drug targets for which many small-molecule inhibitors have been developed. However, there is often insufficient data available on the selectivity of CDK inhibitors (CDKi) to attribute the effects on the presumed target CDK to these inhibitors. Here, we highlight discrepancies between the kinase selectivity of CDKi and the phenotype exhibited; we evaluated 31 CDKi (claimed to target CDK1-4) for activity toward CDKs 1, 2, 4, 5, 7, 9 and for effects on the cell cycle. Our results suggest that most CDKi should be reclassified as pan-selective and should not be used as a tool. In addition, some compounds did not even inhibit CDKs as their primary cellular targets; for example, NU6140 showed potent inhibition of Aurora kinases. We also established an online database of commercially available CDKi for critical evaluation of their utility as molecular probes. Our results should help researchers select the most relevant chemical tools for their specific applications.
Inhibition of GST-tagged CDK2/cyclin A2 (unknown origin) expressed in Escherichia coli using histone H1 as substrate in presence of [gamma-33P]-ATP by radiometric filter binding assay
|
Homo sapiens
|
109.0
nM
|
|
Journal : J Med Chem
Title : How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases?
Year : 2018
Volume : 61
Issue : 20
First Page : 9105
Last Page : 9120
Authors : Jorda R, Hendrychová D, Voller J, Řezníčková E, Gucký T, Kryštof V.
Abstract : Cyclin-dependent kinases (CDKs) are an important and emerging class of drug targets for which many small-molecule inhibitors have been developed. However, there is often insufficient data available on the selectivity of CDK inhibitors (CDKi) to attribute the effects on the presumed target CDK to these inhibitors. Here, we highlight discrepancies between the kinase selectivity of CDKi and the phenotype exhibited; we evaluated 31 CDKi (claimed to target CDK1-4) for activity toward CDKs 1, 2, 4, 5, 7, 9 and for effects on the cell cycle. Our results suggest that most CDKi should be reclassified as pan-selective and should not be used as a tool. In addition, some compounds did not even inhibit CDKs as their primary cellular targets; for example, NU6140 showed potent inhibition of Aurora kinases. We also established an online database of commercially available CDKi for critical evaluation of their utility as molecular probes. Our results should help researchers select the most relevant chemical tools for their specific applications.
Inhibition of GST-tagged CDK5/p25 (unknown origin) expressed in Baculovirus infected Sf9 cells using histone H1 as substrate as substrate in presence of [gamma-33P]-ATP by radiometric filter binding assay
|
Homo sapiens
|
383.0
nM
|
|
Journal : J Med Chem
Title : How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases?
Year : 2018
Volume : 61
Issue : 20
First Page : 9105
Last Page : 9120
Authors : Jorda R, Hendrychová D, Voller J, Řezníčková E, Gucký T, Kryštof V.
Abstract : Cyclin-dependent kinases (CDKs) are an important and emerging class of drug targets for which many small-molecule inhibitors have been developed. However, there is often insufficient data available on the selectivity of CDK inhibitors (CDKi) to attribute the effects on the presumed target CDK to these inhibitors. Here, we highlight discrepancies between the kinase selectivity of CDKi and the phenotype exhibited; we evaluated 31 CDKi (claimed to target CDK1-4) for activity toward CDKs 1, 2, 4, 5, 7, 9 and for effects on the cell cycle. Our results suggest that most CDKi should be reclassified as pan-selective and should not be used as a tool. In addition, some compounds did not even inhibit CDKs as their primary cellular targets; for example, NU6140 showed potent inhibition of Aurora kinases. We also established an online database of commercially available CDKi for critical evaluation of their utility as molecular probes. Our results should help researchers select the most relevant chemical tools for their specific applications.
Inhibition of GST-tagged CDK7/cyclinH/MAT1 (unknown origin) expressed in Baculovirus infected Sf9 cells using YSPTSPS-2 KK peptide as substrate as substrate in presence of [gamma-33P]-ATP by radiometric filter binding assay
|
Homo sapiens
|
270.0
nM
|
|
Journal : J Med Chem
Title : How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases?
Year : 2018
Volume : 61
Issue : 20
First Page : 9105
Last Page : 9120
Authors : Jorda R, Hendrychová D, Voller J, Řezníčková E, Gucký T, Kryštof V.
Abstract : Cyclin-dependent kinases (CDKs) are an important and emerging class of drug targets for which many small-molecule inhibitors have been developed. However, there is often insufficient data available on the selectivity of CDK inhibitors (CDKi) to attribute the effects on the presumed target CDK to these inhibitors. Here, we highlight discrepancies between the kinase selectivity of CDKi and the phenotype exhibited; we evaluated 31 CDKi (claimed to target CDK1-4) for activity toward CDKs 1, 2, 4, 5, 7, 9 and for effects on the cell cycle. Our results suggest that most CDKi should be reclassified as pan-selective and should not be used as a tool. In addition, some compounds did not even inhibit CDKs as their primary cellular targets; for example, NU6140 showed potent inhibition of Aurora kinases. We also established an online database of commercially available CDKi for critical evaluation of their utility as molecular probes. Our results should help researchers select the most relevant chemical tools for their specific applications.
Inhibition of CDK2/Cyclin E (unknown origin)
|
Homo sapiens
|
5.0
nM
|
|
Journal : J Med Chem
Title : Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update.
Year : 2019
Volume : 62
Issue : 9
First Page : 4233
Last Page : 4251
Authors : Tadesse S, Caldon EC, Tilley W, Wang S.
Abstract : Cyclin-dependent kinase 2 (CDK2) drives the progression of cells into the S- and M-phases of the cell cycle. CDK2 activity is largely dispensable for normal development, but it is critically associated with tumor growth in multiple cancer types. Although the role of CDK2 in tumorigenesis has been controversial, emerging evidence proposes that selective CDK2 inhibition may provide a therapeutic benefit against certain tumors, and it continues to appeal as a strategy to exploit in anticancer drug development. Several small-molecule CDK2 inhibitors have progressed to the clinical trials. However, a CDK2-selective inhibitor is yet to be discovered. Here, we discuss the latest understandings of the role of CDK2 in normal and cancer cells, review the core pharmacophores used to target CDK2, and outline strategies for the rational design of CDK2 inhibitors. We attempt to provide an outlook on how CDK2-selective inhibitors may open new avenues for cancer therapy.
Inhibition of CDK4/Cyclin D1 (unknown origin)
|
Homo sapiens
|
100.0
nM
|
|
Journal : J Med Chem
Title : Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update.
Year : 2019
Volume : 62
Issue : 9
First Page : 4233
Last Page : 4251
Authors : Tadesse S, Caldon EC, Tilley W, Wang S.
Abstract : Cyclin-dependent kinase 2 (CDK2) drives the progression of cells into the S- and M-phases of the cell cycle. CDK2 activity is largely dispensable for normal development, but it is critically associated with tumor growth in multiple cancer types. Although the role of CDK2 in tumorigenesis has been controversial, emerging evidence proposes that selective CDK2 inhibition may provide a therapeutic benefit against certain tumors, and it continues to appeal as a strategy to exploit in anticancer drug development. Several small-molecule CDK2 inhibitors have progressed to the clinical trials. However, a CDK2-selective inhibitor is yet to be discovered. Here, we discuss the latest understandings of the role of CDK2 in normal and cancer cells, review the core pharmacophores used to target CDK2, and outline strategies for the rational design of CDK2 inhibitors. We attempt to provide an outlook on how CDK2-selective inhibitors may open new avenues for cancer therapy.
Inhibition of CDK2/Cyclin A (unknown origin)
|
Homo sapiens
|
8.0
nM
|
|
Journal : J Med Chem
Title : Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update.
Year : 2019
Volume : 62
Issue : 9
First Page : 4233
Last Page : 4251
Authors : Tadesse S, Caldon EC, Tilley W, Wang S.
Abstract : Cyclin-dependent kinase 2 (CDK2) drives the progression of cells into the S- and M-phases of the cell cycle. CDK2 activity is largely dispensable for normal development, but it is critically associated with tumor growth in multiple cancer types. Although the role of CDK2 in tumorigenesis has been controversial, emerging evidence proposes that selective CDK2 inhibition may provide a therapeutic benefit against certain tumors, and it continues to appeal as a strategy to exploit in anticancer drug development. Several small-molecule CDK2 inhibitors have progressed to the clinical trials. However, a CDK2-selective inhibitor is yet to be discovered. Here, we discuss the latest understandings of the role of CDK2 in normal and cancer cells, review the core pharmacophores used to target CDK2, and outline strategies for the rational design of CDK2 inhibitors. We attempt to provide an outlook on how CDK2-selective inhibitors may open new avenues for cancer therapy.
Inhibition of CDK1/Cyclin B (unknown origin)
|
Homo sapiens
|
9.0
nM
|
|
Journal : J Med Chem
Title : Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update.
Year : 2019
Volume : 62
Issue : 9
First Page : 4233
Last Page : 4251
Authors : Tadesse S, Caldon EC, Tilley W, Wang S.
Abstract : Cyclin-dependent kinase 2 (CDK2) drives the progression of cells into the S- and M-phases of the cell cycle. CDK2 activity is largely dispensable for normal development, but it is critically associated with tumor growth in multiple cancer types. Although the role of CDK2 in tumorigenesis has been controversial, emerging evidence proposes that selective CDK2 inhibition may provide a therapeutic benefit against certain tumors, and it continues to appeal as a strategy to exploit in anticancer drug development. Several small-molecule CDK2 inhibitors have progressed to the clinical trials. However, a CDK2-selective inhibitor is yet to be discovered. Here, we discuss the latest understandings of the role of CDK2 in normal and cancer cells, review the core pharmacophores used to target CDK2, and outline strategies for the rational design of CDK2 inhibitors. We attempt to provide an outlook on how CDK2-selective inhibitors may open new avenues for cancer therapy.
Inhibition of CDK5/p35 (unknown origin)
|
Homo sapiens
|
4.0
nM
|
|
Journal : J Med Chem
Title : Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update.
Year : 2019
Volume : 62
Issue : 9
First Page : 4233
Last Page : 4251
Authors : Tadesse S, Caldon EC, Tilley W, Wang S.
Abstract : Cyclin-dependent kinase 2 (CDK2) drives the progression of cells into the S- and M-phases of the cell cycle. CDK2 activity is largely dispensable for normal development, but it is critically associated with tumor growth in multiple cancer types. Although the role of CDK2 in tumorigenesis has been controversial, emerging evidence proposes that selective CDK2 inhibition may provide a therapeutic benefit against certain tumors, and it continues to appeal as a strategy to exploit in anticancer drug development. Several small-molecule CDK2 inhibitors have progressed to the clinical trials. However, a CDK2-selective inhibitor is yet to be discovered. Here, we discuss the latest understandings of the role of CDK2 in normal and cancer cells, review the core pharmacophores used to target CDK2, and outline strategies for the rational design of CDK2 inhibitors. We attempt to provide an outlook on how CDK2-selective inhibitors may open new avenues for cancer therapy.
Inhibition of CDK7/cyclin H (unknown origin)
|
Homo sapiens
|
150.0
nM
|
|
Journal : J Med Chem
Title : Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update.
Year : 2019
Volume : 62
Issue : 9
First Page : 4233
Last Page : 4251
Authors : Tadesse S, Caldon EC, Tilley W, Wang S.
Abstract : Cyclin-dependent kinase 2 (CDK2) drives the progression of cells into the S- and M-phases of the cell cycle. CDK2 activity is largely dispensable for normal development, but it is critically associated with tumor growth in multiple cancer types. Although the role of CDK2 in tumorigenesis has been controversial, emerging evidence proposes that selective CDK2 inhibition may provide a therapeutic benefit against certain tumors, and it continues to appeal as a strategy to exploit in anticancer drug development. Several small-molecule CDK2 inhibitors have progressed to the clinical trials. However, a CDK2-selective inhibitor is yet to be discovered. Here, we discuss the latest understandings of the role of CDK2 in normal and cancer cells, review the core pharmacophores used to target CDK2, and outline strategies for the rational design of CDK2 inhibitors. We attempt to provide an outlook on how CDK2-selective inhibitors may open new avenues for cancer therapy.
Antitrypanosomal activity against Trypanosoma brucei brucei 427 bloodstream forms after 48 hrs by resazurin dye based fluorescence assay
|
Trypanosoma brucei brucei
|
170.0
nM
|
|
Journal : MedChemComm
Title : Screening of the Pathogen Box reveals new starting points for anti-trypanosomal drug discovery.
Year : 2018
Volume : 9
Issue : 12
First Page : 2037
Last Page : 2044
Authors : Veale CGL, Hoppe HC.
Abstract : This study aimed to uncover new starting points for anti-trypansomal drug discovery through the screening of the Pathogen Box against <i>Trypanosoma brucei brucei</i>. Our study identified compounds <b>35</b>, <b>39</b>, <b>46</b>, <b>53</b> and <b>56</b> whose activity and selectivity highlighted them as promising candidates with potential for further study and optimisation.
Antitrypanosomal activity against Trypanosoma brucei brucei by pathogen box screening based assay
|
Trypanosoma brucei brucei
|
130.0
nM
|
|
Journal : MedChemComm
Title : Screening of the Pathogen Box reveals new starting points for anti-trypanosomal drug discovery.
Year : 2018
Volume : 9
Issue : 12
First Page : 2037
Last Page : 2044
Authors : Veale CGL, Hoppe HC.
Abstract : This study aimed to uncover new starting points for anti-trypansomal drug discovery through the screening of the Pathogen Box against <i>Trypanosoma brucei brucei</i>. Our study identified compounds <b>35</b>, <b>39</b>, <b>46</b>, <b>53</b> and <b>56</b> whose activity and selectivity highlighted them as promising candidates with potential for further study and optimisation.
Antitrypanosomal activity against Trypanosoma brucei brucei 427 bloodstream forms after 24 hrs by resazurin dye based fluorescence assay
|
Trypanosoma brucei brucei
|
48.0
nM
|
|
Journal : MedChemComm
Title : Screening of the Pathogen Box reveals new starting points for anti-trypanosomal drug discovery.
Year : 2018
Volume : 9
Issue : 12
First Page : 2037
Last Page : 2044
Authors : Veale CGL, Hoppe HC.
Abstract : This study aimed to uncover new starting points for anti-trypansomal drug discovery through the screening of the Pathogen Box against <i>Trypanosoma brucei brucei</i>. Our study identified compounds <b>35</b>, <b>39</b>, <b>46</b>, <b>53</b> and <b>56</b> whose activity and selectivity highlighted them as promising candidates with potential for further study and optimisation.
Antiparasitic activity against bloodstream form of Trypanosoma brucei 221 infected in mouse VSMC assessed as reduction in parasitic proliferation after 48 hrs by cell titer-glo based assay
|
Trypanosoma brucei
|
610.0
nM
|
|
Journal : Bioorg Med Chem
Title : Discovery and antiparasitic activity of AZ960 as a Trypanosoma brucei ERK8 inhibitor.
Year : 2016
Volume : 24
Issue : 19
First Page : 4647
Last Page : 4651
Authors : Valenciano AL, Ramsey AC, Santos WL, Mackey ZB.
Abstract : Human African trypanosomiasis (HAT) is a lethal, vector-borne disease caused by the parasite Trypanosoma brucei. Therapeutic strategies for this neglected tropical disease suffer from disadvantages such as toxicity, high cost, and emerging resistance. Therefore, new drugs with novel modes of action are needed. We screened cultured T. brucei against a focused kinase inhibitor library to identify promising bioactive compounds. Among the ten hits identified from the phenotypic screen, AZ960 emerged as the most promising compound with potent antiparasitic activity (IC50=120nM) and was shown to be a selective inhibitor of an essential gene product, T. brucei extracellular signal-regulated kinase 8 (TbERK8). We report that AZ960 has a Ki of 1.25μM for TbERK8 and demonstrate its utility in establishing TbERK8 as a potentially druggable target in T. brucei.
Inhibition of GST-tagged Trypanosoma brucei ERK8 autophosphorylation expressed in Escherichia coli using myelin basic protein as substrate after 30 mins in presence of 32P-gamma-ATP by SDS-PAGE based autoradiography
|
Trypanosoma brucei
|
20.0
%
|
|
Journal : Bioorg Med Chem
Title : Discovery and antiparasitic activity of AZ960 as a Trypanosoma brucei ERK8 inhibitor.
Year : 2016
Volume : 24
Issue : 19
First Page : 4647
Last Page : 4651
Authors : Valenciano AL, Ramsey AC, Santos WL, Mackey ZB.
Abstract : Human African trypanosomiasis (HAT) is a lethal, vector-borne disease caused by the parasite Trypanosoma brucei. Therapeutic strategies for this neglected tropical disease suffer from disadvantages such as toxicity, high cost, and emerging resistance. Therefore, new drugs with novel modes of action are needed. We screened cultured T. brucei against a focused kinase inhibitor library to identify promising bioactive compounds. Among the ten hits identified from the phenotypic screen, AZ960 emerged as the most promising compound with potent antiparasitic activity (IC50=120nM) and was shown to be a selective inhibitor of an essential gene product, T. brucei extracellular signal-regulated kinase 8 (TbERK8). We report that AZ960 has a Ki of 1.25μM for TbERK8 and demonstrate its utility in establishing TbERK8 as a potentially druggable target in T. brucei.
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
3.62
%
|
|
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
1.627
%
|
|
Title : Identification of inhibitors of SARS-Cov2 M-Pro enzymatic activity using a small molecule repurposing screen
Year : 2020
Authors : Maria Kuzikov, Elisa Costanzi, Jeanette Reinshagen, Francesca Esposito, Laura Vangeel, Markus Wolf, Bernhard Ellinger, Carsten Claussen, Gerd Geisslinger, Angela Corona, Daniela Iaconis, Carmine Talarico, Candida Manelfi, Rolando Cannalire, Giulia Rossetti, Jonas Gossen, Simone Albani, Francesco Musiani, Katja Herzog, Yang Ye, Barbara Giabbai, Nicola Demitri, Dirk Jochmans, Steven De Jonghe, Jasper Rymenants, Vincenzo Summa, Enzo Tramontano, Andrea R. Beccari, Pieter Leyssen, Paola Storici, Johan Neyts, Philip Gribbon, and Andrea Zaliani
Abstract : Compound repurposing is an important strategy being pursued in the identification of effective treatment against the SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (M-Pro), also termed 3CL-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyprotein into 11 non-structural proteins. We report the results of a screening campaign involving ca 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and chemicals regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, but we have also identified 68 compounds with IC50 lower than 1 uM and 127 compounds with IC50 lower than 5 uM. Profiling showed 67% of confirmed hits were selective (> 5 fold) against other Cys- and Ser- proteases (Chymotrypsin and Cathepsin-L) and MERS 3CL-Pro. Selected compounds were also analysed in their binding characteristics.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
7.7
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
5.66
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
5.66
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
7.7
%
|
|
Title : Cytopathic SARS-Cov2 screening on VERO-E6 cells in a large repurposing effort
Year : 2020
Authors : Andrea Zaliani, Laura Vangeel, Jeanette Reinshagen, Daniela Iaconis, Maria Kuzikov, Oliver Keminer, Markus Wolf, Bernhard Ellinger, Francesca Esposito, Angela Corona, Enzo Tramontano, Candida Manelfi, Katja Herzog, Dirk Jochmans, Steven De Jonghe, Winston Chiu, Thibault Francken, Joost Schepers, Caroline Collard, Kayvan Abbasi, Carsten Claussen , Vincenzo Summa, Andrea R. Beccari, Johan Neyts, Philip Gribbon and Pieter Leyssen
Abstract : Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.
Growth inhibiting activity of Naegleria gruberi in vitro
|
Naegleria gruberi
|
18.3
%
|
|
Title : Naegleria gruberi Pathogen Box compounds screening
Authors : Sarink, M; Mykytyn, A; Tielens, A; van Hellemond, J
Abstract : 400 compounds from the Pathogen box were screened for inhibitory activity against Naegleria gruberi strain NEG-M. N. gruberi was grown in modified PYNFH medium in 96-wells plates. Compounds were added in 10 uM concentrations in triplicate wells. Optical density was measured daily, after 6 days area under the curve was calculated and compared to 0.1 % DMSO control.