Inhibitory activity against 15-lipoxygenase in rat polymorphonuclear leukocytes
|
None
|
260.0
nM
|
|
Journal : J. Med. Chem.
Title : Novel caffeic acid derivatives: extremely potent inhibitors of 12-lipoxygenase.
Year : 1991
Volume : 34
Issue : 4
First Page : 1503
Last Page : 1505
Authors : Cho H, Ueda M, Tamaoka M, Hamaguchi M, Aisaka K, Kiso Y, Inoue T, Ogino R, Tatsuoka T, Ishihara T.
Inhibitory activity against 12-lipoxygenase in rat platelet rich plasma
|
None
|
15.0
nM
|
|
Journal : J. Med. Chem.
Title : Novel caffeic acid derivatives: extremely potent inhibitors of 12-lipoxygenase.
Year : 1991
Volume : 34
Issue : 4
First Page : 1503
Last Page : 1505
Authors : Cho H, Ueda M, Tamaoka M, Hamaguchi M, Aisaka K, Kiso Y, Inoue T, Ogino R, Tatsuoka T, Ishihara T.
Inhibition of cell surface aminopeptidase N (APN/CD13) at 0.3*10e-3 M compound concentration
|
None
|
57.0
%
|
|
Journal : J. Med. Chem.
Title : Synthesis and biological evaluation of novel flavone-8-acetic acid derivatives as reversible inhibitors of aminopeptidase N/CD13.
Year : 2003
Volume : 46
Issue : 18
First Page : 3900
Last Page : 3913
Authors : Bauvois B, Puiffe ML, Bongui JB, Paillat S, Monneret C, Dauzonne D.
Abstract : The cell surface aminopeptidase N (APN/CD13), overexpressed in tumor cells, plays a critical role in angiogenesis. However, potent, selective, and, particularly, noncytotoxic inhibitors ot this protein are lacking, and the present work was undertaken with the aim of developing a new generation of noncytotoxic inhibitors that bind to APN/CD13. In this context, we have synthesized a series of novel flavone-8-acetic acid derivatives. Among the herein described and evaluated compounds, the 2',3-dinitroflavone-8-acetic acid (19b) proved to be the most efficient and exhibited an IC(50) of 25 microM which is 2.5 times higher than that of bestatin (1), the natural known inhibitor of APN/CD13. However, in contrast to bestatin (1), the dinitroflavone 19b did not induce any cytotoxicity to cultured human model cells. The presence of other substituents such as NO(2) or OCH(3) groups at the 3'- or 4'-position of the B phenyl group, or the existence of steric constraints (compounds 24 and 29), did not improve selectivity and potency. The flavone 19b affinity for APN/CD13 is not recovered with other proteases such as matrix metalloproteinase-9 (MMP-9), angiotensin converting enzyme (ACE/CD143), neutral endopeptidase (NEP/CD10), gamma-glutamyl transpeptidase (CD224), or the serine proteases dipeptidyl peptidase IV (DPPIV/CD26) or cathepsin G.
Ex vivo inhibition of LTB4 production was measured in dog blood
|
Canis lupus familiaris
|
100.0
mg kg-1
|
|
Journal : J. Med. Chem.
Title : Indazolinones, a new series of redox-active 5-lipoxygenase inhibitors with built-in selectivity and oral activity.
Year : 1991
Volume : 34
Issue : 3
First Page : 1028
Last Page : 1036
Authors : Bruneau P, Delvare C, Edwards MP, McMillan RM.
Abstract : Since the hypothetical mechanisms of hydroperoxydation of arachidonic acid by, respectively, 5-lipoxygenase (5-LPO) and cyclooxygenase (CO) involve a redox cycle, a compound which reduces 5-LPO and CO to their inactive state would give a nonselective inhibitor of both enzymes. Structural modifications of such a compound could be expected to give improved potency and selectivity for 5-LPO and oral activity. Such an approach has led to the discovery of 1,2-dihydroindazol-3-ones which are potent 5-LPO inhibitors with various degrees of selectivity. Structure-activity relationship studies indicated that while N-1,N-2-unsubstituted and N-1-substituted derivatives are orally inactive, N-2-alkyl derivatives are orally active and inhibit both 5-LPO and CO. In contrast, N-2-benzyl derivatives are selective for 5-LPO but possess only weak oral activity. Further structural modifications have identified ICI 207968 [1,2-dihydro-2-(3-pyridylmethyl)-3H-indazol-3-one, 21a] which combines potent oral activity and high selectivity. Methemoglobin (MHb) induction by 21a in dog blood precluded its development for clinical use. Attempts at dissociating 5-LPO inhibitory properties and MHb formation showed that MHb formation in vitro seemed to be related to the redox potential of the compounds whereas 5-LPO inhibition was not. This study led to a series of 4-(N-n-pentylcarbamoyl)indazolinones which maintained in vitro 5-LPO potency but did not induce MHb.
Inhibition of neutral endopeptidase (NEP/CD13) at 0.3*10e-3 M compound concentration
|
None
|
36.0
%
|
|
Journal : J. Med. Chem.
Title : Synthesis and biological evaluation of novel flavone-8-acetic acid derivatives as reversible inhibitors of aminopeptidase N/CD13.
Year : 2003
Volume : 46
Issue : 18
First Page : 3900
Last Page : 3913
Authors : Bauvois B, Puiffe ML, Bongui JB, Paillat S, Monneret C, Dauzonne D.
Abstract : The cell surface aminopeptidase N (APN/CD13), overexpressed in tumor cells, plays a critical role in angiogenesis. However, potent, selective, and, particularly, noncytotoxic inhibitors ot this protein are lacking, and the present work was undertaken with the aim of developing a new generation of noncytotoxic inhibitors that bind to APN/CD13. In this context, we have synthesized a series of novel flavone-8-acetic acid derivatives. Among the herein described and evaluated compounds, the 2',3-dinitroflavone-8-acetic acid (19b) proved to be the most efficient and exhibited an IC(50) of 25 microM which is 2.5 times higher than that of bestatin (1), the natural known inhibitor of APN/CD13. However, in contrast to bestatin (1), the dinitroflavone 19b did not induce any cytotoxicity to cultured human model cells. The presence of other substituents such as NO(2) or OCH(3) groups at the 3'- or 4'-position of the B phenyl group, or the existence of steric constraints (compounds 24 and 29), did not improve selectivity and potency. The flavone 19b affinity for APN/CD13 is not recovered with other proteases such as matrix metalloproteinase-9 (MMP-9), angiotensin converting enzyme (ACE/CD143), neutral endopeptidase (NEP/CD10), gamma-glutamyl transpeptidase (CD224), or the serine proteases dipeptidyl peptidase IV (DPPIV/CD26) or cathepsin G.
Inhibition of human E-selectin after 2 hrs at 100 uM
|
Homo sapiens
|
37.6
%
|
|
Journal : J. Med. Chem.
Title : Rational design of novel, potent small molecule pan-selectin antagonists.
Year : 2007
Volume : 50
Issue : 6
First Page : 1101
Last Page : 1115
Authors : Kranich R, Busemann AS, Bock D, Schroeter-Maas S, Beyer D, Heinemann B, Meyer M, Schierhorn K, Zahlten R, Wolff G, Aydt EM.
Abstract : This report describes the first results of a rational hit-finding strategy to design novel small molecule antiinflammatory drugs targeting selectins, a family of three cellular adhesion molecules. Based on recent progress in understanding of molecular interaction between selectins and their natural ligands as well as progress in clinical development of synthetic antagonists like 1 (bimosiamose, TBC1269), this study was initiated to discover small molecule selectin antagonists with improved pharmacological properties. Considering 1 as template structure, a ligand-based approach followed by focused chemical synthesis has been applied to yield novel synthetic small molecules (MWr < 500) with a trihydroxybenzene motif, bearing neither peptidic nor glycosidic components, with nanomolar in vitro activity. Biological evaluation involves two kinds of in vitro assays, a static molecular binding assay, and a dynamic HL-60 cell attachment assay. As compared to controls, the novel compounds showed improved biological in vitro activity both under static and dynamic conditions.
Inhibition of human P-selectin after 2 hrs at 100 uM
|
Homo sapiens
|
52.0
%
|
|
Journal : J. Med. Chem.
Title : Rational design of novel, potent small molecule pan-selectin antagonists.
Year : 2007
Volume : 50
Issue : 6
First Page : 1101
Last Page : 1115
Authors : Kranich R, Busemann AS, Bock D, Schroeter-Maas S, Beyer D, Heinemann B, Meyer M, Schierhorn K, Zahlten R, Wolff G, Aydt EM.
Abstract : This report describes the first results of a rational hit-finding strategy to design novel small molecule antiinflammatory drugs targeting selectins, a family of three cellular adhesion molecules. Based on recent progress in understanding of molecular interaction between selectins and their natural ligands as well as progress in clinical development of synthetic antagonists like 1 (bimosiamose, TBC1269), this study was initiated to discover small molecule selectin antagonists with improved pharmacological properties. Considering 1 as template structure, a ligand-based approach followed by focused chemical synthesis has been applied to yield novel synthetic small molecules (MWr < 500) with a trihydroxybenzene motif, bearing neither peptidic nor glycosidic components, with nanomolar in vitro activity. Biological evaluation involves two kinds of in vitro assays, a static molecular binding assay, and a dynamic HL-60 cell attachment assay. As compared to controls, the novel compounds showed improved biological in vitro activity both under static and dynamic conditions.
Inhibition of human L-selectin after 2 hrs at 100 uM
|
Homo sapiens
|
51.7
%
|
|
Journal : J. Med. Chem.
Title : Rational design of novel, potent small molecule pan-selectin antagonists.
Year : 2007
Volume : 50
Issue : 6
First Page : 1101
Last Page : 1115
Authors : Kranich R, Busemann AS, Bock D, Schroeter-Maas S, Beyer D, Heinemann B, Meyer M, Schierhorn K, Zahlten R, Wolff G, Aydt EM.
Abstract : This report describes the first results of a rational hit-finding strategy to design novel small molecule antiinflammatory drugs targeting selectins, a family of three cellular adhesion molecules. Based on recent progress in understanding of molecular interaction between selectins and their natural ligands as well as progress in clinical development of synthetic antagonists like 1 (bimosiamose, TBC1269), this study was initiated to discover small molecule selectin antagonists with improved pharmacological properties. Considering 1 as template structure, a ligand-based approach followed by focused chemical synthesis has been applied to yield novel synthetic small molecules (MWr < 500) with a trihydroxybenzene motif, bearing neither peptidic nor glycosidic components, with nanomolar in vitro activity. Biological evaluation involves two kinds of in vitro assays, a static molecular binding assay, and a dynamic HL-60 cell attachment assay. As compared to controls, the novel compounds showed improved biological in vitro activity both under static and dynamic conditions.
Inhibition of 12-hLO
|
None
|
860.0
nM
|
|
Journal : Bioorg. Med. Chem.
Title : Structure-activity relationship studies of flavonoids as potent inhibitors of human platelet 12-hLO, reticulocyte 15-hLO-1, and prostate epithelial 15-hLO-2.
Year : 2007
Volume : 15
Issue : 23
First Page : 7408
Last Page : 7425
Authors : Vasquez-Martinez Y, Ohri RV, Kenyon V, Holman TR, Sepúlveda-Boza S.
Abstract : Human lipoxygenase (hLO) isozymes have been implicated in a number of disease states and have attracted much attention with respect to their inhibition. One class of inhibitors, the flavonoids, have been shown to be potent lipoxygenase inhibitors but their study has been restricted to those compounds found in nature, which have limited structural variability. We have therefore carried out a comprehensive study to determine the structural requirements for flavonoid potency and selectivity against platelet 12-hLO, reticulocyte 15-hLO-1, and prostate epithelial 15-hLO-2. We conclude from this study that catechols are essential for high potency, that isoflavones and isoflavonones tend to select against 12-hLO, that isoflavons tend to select against 15-hLO-1, but few flavonoids target 15-hLO-2.
Inhibition of cow milk xanthine oxidase at 50 ug/mL
|
Bos taurus
|
85.5
%
|
|
Journal : J. Nat. Prod.
Title : Inhibition of cow's milk xanthine oxidase by flavonoids.
Year : 1988
Volume : 51
Issue : 2
First Page : 345
Last Page : 348
Authors : Hayashi T, Sawa K, Kawasaki M, Arisawa M, Shimizu M, Morita N.
Inhibition of Saccharomyces cerevisiae fatty acid synthase
|
Saccharomyces cerevisiae
|
25.0
ug.mL-1
|
|
Journal : J. Nat. Prod.
Title : Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies.
Year : 2002
Volume : 65
Issue : 12
First Page : 1909
Last Page : 1914
Authors : Li XC, Joshi AS, ElSohly HN, Khan SI, Jacob MR, Zhang Z, Khan IA, Ferreira D, Walker LA, Broedel SE, Raulli RE, Cihlar RL.
Abstract : Fatty acid synthase (FAS) has been identified as a potential antifungal target. FAS prepared from Saccharomyces cerevisiae was employed for bioactivity-guided fractionation of Chlorophora tinctoria,Paspalum conjugatum, Symphonia globulifera, Buchenavia parviflora, and Miconia pilgeriana. Thirteen compounds (1-13), including three new natural products (1, 4, 12), were isolated and their structures identified by spectroscopic interpretation. They represented five chemotypes, namely, isoflavones, flavones, biflavonoids, hydrolyzable tannin-related derivatives, and triterpenoids. 3'-Formylgenistein (1) and ellagic acid 4-O-alpha-l-rhamnopyranoside (9) were the most potent compounds against FAS, with IC(50) values of 2.3 and 7.5 microg/mL, respectively. Furthermore, 43 (14-56) analogues of the five chemotypes from our natural product repository and commercial sources were tested for their FAS inhibitory activity. Structure-activity relationships for some chemotypes were investigated. All these compounds were further evaluated for antifungal activity against Candida albicans and Cryptococcus neoformans. Although there were several antifungal compounds in the set, correlation between the FAS inhibitory activity and antifungal activity could not be defined.
Antifungal activity against Candida albicans ATCC 90028
|
Candida albicans
|
6.0
ug.mL-1
|
|
Journal : J. Nat. Prod.
Title : Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies.
Year : 2002
Volume : 65
Issue : 12
First Page : 1909
Last Page : 1914
Authors : Li XC, Joshi AS, ElSohly HN, Khan SI, Jacob MR, Zhang Z, Khan IA, Ferreira D, Walker LA, Broedel SE, Raulli RE, Cihlar RL.
Abstract : Fatty acid synthase (FAS) has been identified as a potential antifungal target. FAS prepared from Saccharomyces cerevisiae was employed for bioactivity-guided fractionation of Chlorophora tinctoria,Paspalum conjugatum, Symphonia globulifera, Buchenavia parviflora, and Miconia pilgeriana. Thirteen compounds (1-13), including three new natural products (1, 4, 12), were isolated and their structures identified by spectroscopic interpretation. They represented five chemotypes, namely, isoflavones, flavones, biflavonoids, hydrolyzable tannin-related derivatives, and triterpenoids. 3'-Formylgenistein (1) and ellagic acid 4-O-alpha-l-rhamnopyranoside (9) were the most potent compounds against FAS, with IC(50) values of 2.3 and 7.5 microg/mL, respectively. Furthermore, 43 (14-56) analogues of the five chemotypes from our natural product repository and commercial sources were tested for their FAS inhibitory activity. Structure-activity relationships for some chemotypes were investigated. All these compounds were further evaluated for antifungal activity against Candida albicans and Cryptococcus neoformans. Although there were several antifungal compounds in the set, correlation between the FAS inhibitory activity and antifungal activity could not be defined.
Antifungal activity against Cryptococcus neoformans ATCC 90113
|
Cryptococcus neoformans
|
50.0
ug.mL-1
|
|
Journal : J. Nat. Prod.
Title : Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies.
Year : 2002
Volume : 65
Issue : 12
First Page : 1909
Last Page : 1914
Authors : Li XC, Joshi AS, ElSohly HN, Khan SI, Jacob MR, Zhang Z, Khan IA, Ferreira D, Walker LA, Broedel SE, Raulli RE, Cihlar RL.
Abstract : Fatty acid synthase (FAS) has been identified as a potential antifungal target. FAS prepared from Saccharomyces cerevisiae was employed for bioactivity-guided fractionation of Chlorophora tinctoria,Paspalum conjugatum, Symphonia globulifera, Buchenavia parviflora, and Miconia pilgeriana. Thirteen compounds (1-13), including three new natural products (1, 4, 12), were isolated and their structures identified by spectroscopic interpretation. They represented five chemotypes, namely, isoflavones, flavones, biflavonoids, hydrolyzable tannin-related derivatives, and triterpenoids. 3'-Formylgenistein (1) and ellagic acid 4-O-alpha-l-rhamnopyranoside (9) were the most potent compounds against FAS, with IC(50) values of 2.3 and 7.5 microg/mL, respectively. Furthermore, 43 (14-56) analogues of the five chemotypes from our natural product repository and commercial sources were tested for their FAS inhibitory activity. Structure-activity relationships for some chemotypes were investigated. All these compounds were further evaluated for antifungal activity against Candida albicans and Cryptococcus neoformans. Although there were several antifungal compounds in the set, correlation between the FAS inhibitory activity and antifungal activity could not be defined.
Inhibition of human prolyl oligopeptidase at 50 uM in presence of 0.01% Triton X-100
|
Homo sapiens
|
51.0
%
|
|
Journal : Bioorg. Med. Chem.
Title : Baicalin, a prodrug able to reach the CNS, is a prolyl oligopeptidase inhibitor.
Year : 2008
Volume : 16
Issue : 15
First Page : 7516
Last Page : 7524
Authors : Tarragó T, Kichik N, Claasen B, Prades R, Teixidó M, Giralt E.
Abstract : Prolyl oligopeptidase is a cytosolic serine peptidase that hydrolyzes proline-containing peptides at the carboxy terminus of proline residues. It has been associated with schizophrenia, bipolar affective disorder, and related neuropsychiatric disorders and therefore may have important clinical implications. In a previous work, we used (19)F NMR to search for new prolyl oligopeptidase inhibitors from a library of traditional Chinese medicine plant extracts, and identified several extracts as powerful inhibitors of this peptidase. Here, the flavonoid baicalin was isolated as the active component of an extract of Scutellaria baicalensis roots having prolyl oligopeptidase inhibitory activity. Baicalin inhibited prolyl oligopeptidase in a dose-dependent manner. Inhibition experiments using baicalin analogs showed that the sugar moiety was not necessary for activity. The IC(50)s of baicalin and its aglycone derivative baicalein were rather similar, showing that the sugar moiety was not involved in the interaction of baicalin with POP. These results were confirmed by saturation transfer difference NMR experiments. To further understand the absorption and transport mechanisms of baicalin and baicalein, we evaluated their transport in vitro through the gastrointestinal tract and the blood-brain barrier using a Parallel Artificial Membrane Permeability Assay. The molecule which potentially crosses both barriers was identified as baicalein, the aglycone moiety of baicalin. Our results show that baicalin is a new prodrug able to inhibit prolyl oligopeptidase. As baicalin is a natural compound with a long history of safe administration to humans, it is a highly attractive base from which to develop new treatments for schizophrenia, bipolar affective disorder, and related neuropsychiatric diseases.
Inhibition of human prolyl oligopeptidase at 50 uM after 20 mins microcentrifugation
|
Homo sapiens
|
64.0
%
|
|
Journal : Bioorg. Med. Chem.
Title : Baicalin, a prodrug able to reach the CNS, is a prolyl oligopeptidase inhibitor.
Year : 2008
Volume : 16
Issue : 15
First Page : 7516
Last Page : 7524
Authors : Tarragó T, Kichik N, Claasen B, Prades R, Teixidó M, Giralt E.
Abstract : Prolyl oligopeptidase is a cytosolic serine peptidase that hydrolyzes proline-containing peptides at the carboxy terminus of proline residues. It has been associated with schizophrenia, bipolar affective disorder, and related neuropsychiatric disorders and therefore may have important clinical implications. In a previous work, we used (19)F NMR to search for new prolyl oligopeptidase inhibitors from a library of traditional Chinese medicine plant extracts, and identified several extracts as powerful inhibitors of this peptidase. Here, the flavonoid baicalin was isolated as the active component of an extract of Scutellaria baicalensis roots having prolyl oligopeptidase inhibitory activity. Baicalin inhibited prolyl oligopeptidase in a dose-dependent manner. Inhibition experiments using baicalin analogs showed that the sugar moiety was not necessary for activity. The IC(50)s of baicalin and its aglycone derivative baicalein were rather similar, showing that the sugar moiety was not involved in the interaction of baicalin with POP. These results were confirmed by saturation transfer difference NMR experiments. To further understand the absorption and transport mechanisms of baicalin and baicalein, we evaluated their transport in vitro through the gastrointestinal tract and the blood-brain barrier using a Parallel Artificial Membrane Permeability Assay. The molecule which potentially crosses both barriers was identified as baicalein, the aglycone moiety of baicalin. Our results show that baicalin is a new prodrug able to inhibit prolyl oligopeptidase. As baicalin is a natural compound with a long history of safe administration to humans, it is a highly attractive base from which to develop new treatments for schizophrenia, bipolar affective disorder, and related neuropsychiatric diseases.
Inhibition of human prolyl oligopeptidase at 50 uM preincubated for 5 mins
|
Homo sapiens
|
60.0
%
|
|
Journal : Bioorg. Med. Chem.
Title : Baicalin, a prodrug able to reach the CNS, is a prolyl oligopeptidase inhibitor.
Year : 2008
Volume : 16
Issue : 15
First Page : 7516
Last Page : 7524
Authors : Tarragó T, Kichik N, Claasen B, Prades R, Teixidó M, Giralt E.
Abstract : Prolyl oligopeptidase is a cytosolic serine peptidase that hydrolyzes proline-containing peptides at the carboxy terminus of proline residues. It has been associated with schizophrenia, bipolar affective disorder, and related neuropsychiatric disorders and therefore may have important clinical implications. In a previous work, we used (19)F NMR to search for new prolyl oligopeptidase inhibitors from a library of traditional Chinese medicine plant extracts, and identified several extracts as powerful inhibitors of this peptidase. Here, the flavonoid baicalin was isolated as the active component of an extract of Scutellaria baicalensis roots having prolyl oligopeptidase inhibitory activity. Baicalin inhibited prolyl oligopeptidase in a dose-dependent manner. Inhibition experiments using baicalin analogs showed that the sugar moiety was not necessary for activity. The IC(50)s of baicalin and its aglycone derivative baicalein were rather similar, showing that the sugar moiety was not involved in the interaction of baicalin with POP. These results were confirmed by saturation transfer difference NMR experiments. To further understand the absorption and transport mechanisms of baicalin and baicalein, we evaluated their transport in vitro through the gastrointestinal tract and the blood-brain barrier using a Parallel Artificial Membrane Permeability Assay. The molecule which potentially crosses both barriers was identified as baicalein, the aglycone moiety of baicalin. Our results show that baicalin is a new prodrug able to inhibit prolyl oligopeptidase. As baicalin is a natural compound with a long history of safe administration to humans, it is a highly attractive base from which to develop new treatments for schizophrenia, bipolar affective disorder, and related neuropsychiatric diseases.
Inhibition of human prolyl oligopeptidase at 50 uM preincubated for 10 mins
|
Homo sapiens
|
81.0
%
|
|
Journal : Bioorg. Med. Chem.
Title : Baicalin, a prodrug able to reach the CNS, is a prolyl oligopeptidase inhibitor.
Year : 2008
Volume : 16
Issue : 15
First Page : 7516
Last Page : 7524
Authors : Tarragó T, Kichik N, Claasen B, Prades R, Teixidó M, Giralt E.
Abstract : Prolyl oligopeptidase is a cytosolic serine peptidase that hydrolyzes proline-containing peptides at the carboxy terminus of proline residues. It has been associated with schizophrenia, bipolar affective disorder, and related neuropsychiatric disorders and therefore may have important clinical implications. In a previous work, we used (19)F NMR to search for new prolyl oligopeptidase inhibitors from a library of traditional Chinese medicine plant extracts, and identified several extracts as powerful inhibitors of this peptidase. Here, the flavonoid baicalin was isolated as the active component of an extract of Scutellaria baicalensis roots having prolyl oligopeptidase inhibitory activity. Baicalin inhibited prolyl oligopeptidase in a dose-dependent manner. Inhibition experiments using baicalin analogs showed that the sugar moiety was not necessary for activity. The IC(50)s of baicalin and its aglycone derivative baicalein were rather similar, showing that the sugar moiety was not involved in the interaction of baicalin with POP. These results were confirmed by saturation transfer difference NMR experiments. To further understand the absorption and transport mechanisms of baicalin and baicalein, we evaluated their transport in vitro through the gastrointestinal tract and the blood-brain barrier using a Parallel Artificial Membrane Permeability Assay. The molecule which potentially crosses both barriers was identified as baicalein, the aglycone moiety of baicalin. Our results show that baicalin is a new prodrug able to inhibit prolyl oligopeptidase. As baicalin is a natural compound with a long history of safe administration to humans, it is a highly attractive base from which to develop new treatments for schizophrenia, bipolar affective disorder, and related neuropsychiatric diseases.
Inhibition of human prolyl oligopeptidase at 50 uM preincubated for 15 mins
|
Homo sapiens
|
77.0
%
|
|
Journal : Bioorg. Med. Chem.
Title : Baicalin, a prodrug able to reach the CNS, is a prolyl oligopeptidase inhibitor.
Year : 2008
Volume : 16
Issue : 15
First Page : 7516
Last Page : 7524
Authors : Tarragó T, Kichik N, Claasen B, Prades R, Teixidó M, Giralt E.
Abstract : Prolyl oligopeptidase is a cytosolic serine peptidase that hydrolyzes proline-containing peptides at the carboxy terminus of proline residues. It has been associated with schizophrenia, bipolar affective disorder, and related neuropsychiatric disorders and therefore may have important clinical implications. In a previous work, we used (19)F NMR to search for new prolyl oligopeptidase inhibitors from a library of traditional Chinese medicine plant extracts, and identified several extracts as powerful inhibitors of this peptidase. Here, the flavonoid baicalin was isolated as the active component of an extract of Scutellaria baicalensis roots having prolyl oligopeptidase inhibitory activity. Baicalin inhibited prolyl oligopeptidase in a dose-dependent manner. Inhibition experiments using baicalin analogs showed that the sugar moiety was not necessary for activity. The IC(50)s of baicalin and its aglycone derivative baicalein were rather similar, showing that the sugar moiety was not involved in the interaction of baicalin with POP. These results were confirmed by saturation transfer difference NMR experiments. To further understand the absorption and transport mechanisms of baicalin and baicalein, we evaluated their transport in vitro through the gastrointestinal tract and the blood-brain barrier using a Parallel Artificial Membrane Permeability Assay. The molecule which potentially crosses both barriers was identified as baicalein, the aglycone moiety of baicalin. Our results show that baicalin is a new prodrug able to inhibit prolyl oligopeptidase. As baicalin is a natural compound with a long history of safe administration to humans, it is a highly attractive base from which to develop new treatments for schizophrenia, bipolar affective disorder, and related neuropsychiatric diseases.
Inhibition of human prolyl oligopeptidase at 50 uM preincubated for 30 mins
|
Homo sapiens
|
84.0
%
|
|
Journal : Bioorg. Med. Chem.
Title : Baicalin, a prodrug able to reach the CNS, is a prolyl oligopeptidase inhibitor.
Year : 2008
Volume : 16
Issue : 15
First Page : 7516
Last Page : 7524
Authors : Tarragó T, Kichik N, Claasen B, Prades R, Teixidó M, Giralt E.
Abstract : Prolyl oligopeptidase is a cytosolic serine peptidase that hydrolyzes proline-containing peptides at the carboxy terminus of proline residues. It has been associated with schizophrenia, bipolar affective disorder, and related neuropsychiatric disorders and therefore may have important clinical implications. In a previous work, we used (19)F NMR to search for new prolyl oligopeptidase inhibitors from a library of traditional Chinese medicine plant extracts, and identified several extracts as powerful inhibitors of this peptidase. Here, the flavonoid baicalin was isolated as the active component of an extract of Scutellaria baicalensis roots having prolyl oligopeptidase inhibitory activity. Baicalin inhibited prolyl oligopeptidase in a dose-dependent manner. Inhibition experiments using baicalin analogs showed that the sugar moiety was not necessary for activity. The IC(50)s of baicalin and its aglycone derivative baicalein were rather similar, showing that the sugar moiety was not involved in the interaction of baicalin with POP. These results were confirmed by saturation transfer difference NMR experiments. To further understand the absorption and transport mechanisms of baicalin and baicalein, we evaluated their transport in vitro through the gastrointestinal tract and the blood-brain barrier using a Parallel Artificial Membrane Permeability Assay. The molecule which potentially crosses both barriers was identified as baicalein, the aglycone moiety of baicalin. Our results show that baicalin is a new prodrug able to inhibit prolyl oligopeptidase. As baicalin is a natural compound with a long history of safe administration to humans, it is a highly attractive base from which to develop new treatments for schizophrenia, bipolar affective disorder, and related neuropsychiatric diseases.
Inhibition of trypsin by protease assay system
|
None
|
500.0
nM
|
|
Journal : J. Nat. Prod.
Title : Effects of flavonoids isolated from scutellariae radix on fibrinolytic system induced by trypsin in human umbilical vein endothelial cells.
Year : 1997
Volume : 60
Issue : 6
First Page : 598
Last Page : 601
Authors : Kimura Y, Okuda H, Ogita Z.
Abstract : Studies on the effects of flavonoids isolated from the roots of Scutellaria baicalensis on the fibrinolytic system induced by trypsin in cultured human umbilical vein endothelial cells (HUVECs) showed that baicalein (1) strongly inhibited the reduction of t-PA production and the elevation of PAI-1 production induced by trypsin. The IC50 for PAI-1 production was 3.7 microM. In addition, wogonin (3), oroxylin A (5), skullcapflavone II (6), and 2',5,5',7-tetrahydroxy-6',8-dimethoxyflavone (7) inhibited the elevation of PAI-1 induced by trypsin, though less strongly; their IC50 were 105, 61, 110, and 88 microM, respectively. These findings suggest that baicalein prevents the thrombotic tendency induced by trypsin.
Inhibition of polyhistidine tagged yeast prion protein Sup35 expressed in Escherichia coli BL21 (DE3) assessed as inhibition of amyloid polymerization at 50 uM by thioflavin T fluorescence assay relative to untreated control
|
Saccharomyces cerevisiae
|
95.4
%
|
|
Journal : Nat. Chem. Biol.
Title : Small-molecule aggregates inhibit amyloid polymerization.
Year : 2008
Volume : 4
Issue : 3
First Page : 197
Last Page : 199
Authors : Feng BY, Toyama BH, Wille H, Colby DW, Collins SR, May BC, Prusiner SB, Weissman J, Shoichet BK.
Abstract : Many amyloid inhibitors resemble molecules that form chemical aggregates, which are known to inhibit many proteins. Eight known chemical aggregators inhibited amyloid formation of the yeast and mouse prion proteins Sup35 and recMoPrP in a manner characteristic of colloidal inhibition. Similarly, three known anti-amyloid molecules inhibited beta-lactamase in a detergent-dependent manner, which suggests that they too form colloidal aggregates. The colloids localized to preformed fibers and prevented new fiber formation in electron micrographs. They also blocked infection of yeast cells with Sup35 prions, which suggests that colloidal inhibition may be relevant in more biological milieus.
Inhibition of polyhistidine tagged yeast prion protein Sup35 expressed in Escherichia coli BL21 (DE3) assessed as inhibition of amyloid polymerization at 50 uM in presence of 5 mg/ml BSA by thioflavin T fluorescence assay relative to untreated control
|
Saccharomyces cerevisiae
|
17.6
%
|
|
Journal : Nat. Chem. Biol.
Title : Small-molecule aggregates inhibit amyloid polymerization.
Year : 2008
Volume : 4
Issue : 3
First Page : 197
Last Page : 199
Authors : Feng BY, Toyama BH, Wille H, Colby DW, Collins SR, May BC, Prusiner SB, Weissman J, Shoichet BK.
Abstract : Many amyloid inhibitors resemble molecules that form chemical aggregates, which are known to inhibit many proteins. Eight known chemical aggregators inhibited amyloid formation of the yeast and mouse prion proteins Sup35 and recMoPrP in a manner characteristic of colloidal inhibition. Similarly, three known anti-amyloid molecules inhibited beta-lactamase in a detergent-dependent manner, which suggests that they too form colloidal aggregates. The colloids localized to preformed fibers and prevented new fiber formation in electron micrographs. They also blocked infection of yeast cells with Sup35 prions, which suggests that colloidal inhibition may be relevant in more biological milieus.
Inhibition of mouse prion protein (89-230) assessed as inhibition of amyloid polymerization at 50 uM by thioflavin T fluorescence assay relative to untreated control
|
Mus musculus
|
34.3
%
|
|
Journal : Nat. Chem. Biol.
Title : Small-molecule aggregates inhibit amyloid polymerization.
Year : 2008
Volume : 4
Issue : 3
First Page : 197
Last Page : 199
Authors : Feng BY, Toyama BH, Wille H, Colby DW, Collins SR, May BC, Prusiner SB, Weissman J, Shoichet BK.
Abstract : Many amyloid inhibitors resemble molecules that form chemical aggregates, which are known to inhibit many proteins. Eight known chemical aggregators inhibited amyloid formation of the yeast and mouse prion proteins Sup35 and recMoPrP in a manner characteristic of colloidal inhibition. Similarly, three known anti-amyloid molecules inhibited beta-lactamase in a detergent-dependent manner, which suggests that they too form colloidal aggregates. The colloids localized to preformed fibers and prevented new fiber formation in electron micrographs. They also blocked infection of yeast cells with Sup35 prions, which suggests that colloidal inhibition may be relevant in more biological milieus.
Inhibition of Beta-lactamase at 30 uM by nitrocefin hydrolysis assay
|
None
|
51.8
%
|
|
Journal : Nat. Chem. Biol.
Title : Small-molecule aggregates inhibit amyloid polymerization.
Year : 2008
Volume : 4
Issue : 3
First Page : 197
Last Page : 199
Authors : Feng BY, Toyama BH, Wille H, Colby DW, Collins SR, May BC, Prusiner SB, Weissman J, Shoichet BK.
Abstract : Many amyloid inhibitors resemble molecules that form chemical aggregates, which are known to inhibit many proteins. Eight known chemical aggregators inhibited amyloid formation of the yeast and mouse prion proteins Sup35 and recMoPrP in a manner characteristic of colloidal inhibition. Similarly, three known anti-amyloid molecules inhibited beta-lactamase in a detergent-dependent manner, which suggests that they too form colloidal aggregates. The colloids localized to preformed fibers and prevented new fiber formation in electron micrographs. They also blocked infection of yeast cells with Sup35 prions, which suggests that colloidal inhibition may be relevant in more biological milieus.
Inhibition of Beta-lactamase at 30 uM in presence of 0.01% Triton X-100 by nitrocefin hydrolysis assay
|
None
|
0.0
%
|
|
Journal : Nat. Chem. Biol.
Title : Small-molecule aggregates inhibit amyloid polymerization.
Year : 2008
Volume : 4
Issue : 3
First Page : 197
Last Page : 199
Authors : Feng BY, Toyama BH, Wille H, Colby DW, Collins SR, May BC, Prusiner SB, Weissman J, Shoichet BK.
Abstract : Many amyloid inhibitors resemble molecules that form chemical aggregates, which are known to inhibit many proteins. Eight known chemical aggregators inhibited amyloid formation of the yeast and mouse prion proteins Sup35 and recMoPrP in a manner characteristic of colloidal inhibition. Similarly, three known anti-amyloid molecules inhibited beta-lactamase in a detergent-dependent manner, which suggests that they too form colloidal aggregates. The colloids localized to preformed fibers and prevented new fiber formation in electron micrographs. They also blocked infection of yeast cells with Sup35 prions, which suggests that colloidal inhibition may be relevant in more biological milieus.
Inhibition of lipoxygenase at 1000 uM
|
None
|
22.5
%
|
|
Journal : Eur. J. Med. Chem.
Title : 3-Formylchromones: potential antiinflammatory agents.
Year : 2010
Volume : 45
Issue : 9
First Page : 4058
Last Page : 4064
Authors : Khan KM, Ambreen N, Mughal UR, Jalil S, Perveen S, Choudhary MI.
Abstract : The synthesis and characterization of 3-formylchromone (1) and its derivatives 2-24 and evaluation of their potential antiinflammatory activities is reported here. These compounds were characterized by (1)H NMR, EI MS, IR, and UV spectroscopic techniques and elemental analysis. The synthesized compounds were evaluated by using various in vitro and in vivo assay models for antiinflammatory activity and their effects were compared with known standard drug such as aspirin and indomethacin. Among all tested compounds, 1, 2, 5, 6, 9, 14, 16-19, 21-23, showed promising antiinflammatory activities. The results and SAR has been discussed in this report.
Inhibition of TNFalpha in LPS-stimulated mouse RAW264.7 cells at 10 uM after 2 hrs treated after 14 hrs of LPS challenge by FACS analysis
|
Mus musculus
|
71.3
%
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Discovery of the inhibitors of tumor necrosis factor alpha with structure-based virtual screening.
Year : 2010
Volume : 20
Issue : 21
First Page : 6195
Last Page : 6198
Authors : Choi H, Lee Y, Park H, Oh DS.
Abstract : Tumor necrosis factor alpha (TNF-α) has been considered as one of the attractive drug targets for allergic diseases including asthma. We have been able to identify five novel TNF-α inhibitors with a drug-design protocol involving the structure-based virtual screening and in vitro cell-based assay for antagonistic activity. Because the newly discovered inhibitors are structurally diverse and have the desirable physicochemical properties as a drug candidate, they deserve a further investigation as anti-asthmatic drugs. The interactions of the identified inhibitors in the binding site of TNF-α dimer are addressed in detail to understand the mechanisms for the stabilization of the inactive dimeric form of TNF-α.
Inhibition of CYP1B1 EROD activity assessed as inhibition of deethylation of 7-ethoxyresorufin to resorufin
|
None
|
260.0
nM
|
|
Journal : Bioorg. Med. Chem.
Title : Comparative CYP1A1 and CYP1B1 substrate and inhibitor profile of dietary flavonoids.
Year : 2011
Volume : 19
Issue : 9
First Page : 2842
Last Page : 2849
Authors : Androutsopoulos VP, Papakyriakou A, Vourloumis D, Spandidos DA.
Abstract : CYP1A1 and CYP1B1 are two extrahepatic enzymes that have been implicated in carcinogenesis and cancer progression. Selective inhibition of CYP1A1 and CYP1B1 by dietary constituents, notably the class of flavonoids, is a widely accepted paradigm that supports the concept of dietary chemoprevention. In parallel, recent studies have documented the ability of CYP1 enzymes to selectively metabolize dietary flavonoids to conversion products that inhibit cancer cell proliferation. In the present study we have examined the inhibition of CYP1A1 and CYP1B1-catalyzed EROD activity by 14 different flavonoids containing methoxy- and hydroxyl-group substitutions as well as the metabolism of the monomethoxylated CYP1-flavonoid inhibitor acacetin and the poly-methoxylated flavone eupatorin-5-methyl ether by recombinant CYP1A1 and CYP1B1. The most potent inhibitors of CYP1-EROD activity were the methoxylated flavones acacetin, diosmetin, eupatorin and the di-hydroxylated flavone chrysin, indicating that the 4'-OCH(3) group at the B ring and the 5,7-dihydroxy motif at the A ring play a prominent role in EROD inhibition. Potent inhibition of CYP1B1 EROD activity was also obtained for the poly-hydroxylated flavonols quercetin and myricetin. HPLC metabolism of acacetin by CYP1A1 and CYP1B1 revealed the formation of the structurally similar flavone apigenin by demethylation at the 4'-position of the B ring, whereas the flavone eupatorin-5-methyl ether was metabolized to an as yet unidentified metabolite assigned E(5)M1. Eupatorin-5-methyl ether demonstrated a submicromolar IC(50) in the CYP1-expressing cancer cell line MDA-MB 468, while it was considerably inactive in the normal cell line MCF-10A. Homology modeling in conjunction with molecular docking calculations were employed in an effort to rationalize the activity of these flavonoids based on their CYP1-binding mode. Taken together the data suggest that dietary flavonoids exhibit three distinct modes of action with regard to cancer prevention, based on their hydroxyl and methoxy decoration: (1) inhibitors of CYP1 enzymatic activity, (2) CYP1 substrates and (3) substrates and inhibitors of CYP1 enzymes.
Inhibition of human 15-lipoxygenase
|
Homo sapiens
|
600.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of potent and selective inhibitors of human platelet-type 12- lipoxygenase.
Year : 2011
Volume : 54
Issue : 15
First Page : 5485
Last Page : 5497
Authors : Kenyon V, Rai G, Jadhav A, Schultz L, Armstrong M, Jameson JB, Perry S, Joshi N, Bougie JM, Leister W, Taylor-Fishwick DA, Nadler JL, Holinstat M, Simeonov A, Maloney DJ, Holman TR.
Abstract : We report the discovery of novel small molecule inhibitors of platelet-type 12-human lipoxygenase, which display nanomolar activity against the purified enzyme, using a quantitative high-throughput screen (qHTS) on a library of 153607 compounds. These compounds also exhibit excellent specificity, >50-fold selectivity vs the paralogues, 5-human lipoxygenase, reticulocyte 15-human lipoxygenase type-1, and epithelial 15-human lipoxygenase type-2, and >100-fold selectivity vs ovine cyclooxygenase-1 and human cyclooxygenase-2. Kinetic experiments indicate this chemotype is a noncompetitive inhibitor that does not reduce the active site iron. Moreover, chiral HPLC separation of two of the racemic lead molecules revealed a strong preference for the (-)-enantiomers (IC(50) of 0.43 ± 0.04 and 0.38 ± 0.05 μM) compared to the (+)-enantiomers (IC(50) of >25 μM for both), indicating a fine degree of selectivity in the active site due to chiral geometry. In addition, these compounds demonstrate efficacy in cellular models, which underscores their relevance to disease modification.
Antiinflammatory activity against mouse RAW264.7 cells assessed as inhibition of LPS-induced NO production at 25 uM preincubated for 1 hr before LPS challenge measured after 24 hrs by Griess method
|
Mus musculus
|
11.13
%
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : 4'-bromo-5,6,7-trimethoxyflavone represses lipopolysaccharide-induced iNOS and COX-2 expressions by suppressing the NF-κB signaling pathway in RAW 264.7 macrophages.
Year : 2012
Volume : 22
Issue : 1
First Page : 700
Last Page : 705
Authors : Kim DH, Yun CH, Kim MH, Naveen Kumar Ch, Yun BH, Shin JS, An HJ, Lee YH, Yun YD, Rim HK, Yoo MS, Lee KT, Lee YS.
Abstract : The regulations of the NO and PGE(2) productions are research topics of interest in the field of anti-inflammatory drug development. In the present study, 5,6,7-trimethoxy- and 5,6,7-trihydroxyflavones 3a-3g were synthesized from cinnamic acid derivatives. In particular, 4'-bromo-5,6,7-trimethoxyflavone (3b) most potently inhibited the productions of NO and PGE(2) in LPS-treated RAW 264.7 cells (IC(50)=14.22 ± 1.25 and 10.98 ± 6.25 μM, respectively), and these inhibitory effects were more potent than those of oroxylin A or baicalein. Consistent with these findings, 3b concentration-dependently reduced the LPS-induced expressions of iNOS and COX-2 at the protein and mRNA levels. In addition, the release of TNF-α, IL-6, and IL-1β and the mRNA expressions of these cytokines were reduced by 3b in a concentration-dependent manner. Furthermore, 3b attenuated the LPS-induced transcriptional activities of NF-κB and this was accompanied by parallel reductions in the degradation and phosphorylation of IκB-α, and consequently by a decrease in the nuclear translocation of the p65 subunit of NF-κB. Taken together, these results suggest that suppressions of the expressions of iNOS, COX-2, TNF-α, IL-6, and IL-1β via NF-κB inactivation are responsible for the anti-inflammatory effects of 3b.
Antiinflammatory activity against mouse RAW264.7 cells assessed as inhibition of LPS-induced PGE2 production at 25 uM by EIA
|
Mus musculus
|
60.87
%
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : 4'-bromo-5,6,7-trimethoxyflavone represses lipopolysaccharide-induced iNOS and COX-2 expressions by suppressing the NF-κB signaling pathway in RAW 264.7 macrophages.
Year : 2012
Volume : 22
Issue : 1
First Page : 700
Last Page : 705
Authors : Kim DH, Yun CH, Kim MH, Naveen Kumar Ch, Yun BH, Shin JS, An HJ, Lee YH, Yun YD, Rim HK, Yoo MS, Lee KT, Lee YS.
Abstract : The regulations of the NO and PGE(2) productions are research topics of interest in the field of anti-inflammatory drug development. In the present study, 5,6,7-trimethoxy- and 5,6,7-trihydroxyflavones 3a-3g were synthesized from cinnamic acid derivatives. In particular, 4'-bromo-5,6,7-trimethoxyflavone (3b) most potently inhibited the productions of NO and PGE(2) in LPS-treated RAW 264.7 cells (IC(50)=14.22 ± 1.25 and 10.98 ± 6.25 μM, respectively), and these inhibitory effects were more potent than those of oroxylin A or baicalein. Consistent with these findings, 3b concentration-dependently reduced the LPS-induced expressions of iNOS and COX-2 at the protein and mRNA levels. In addition, the release of TNF-α, IL-6, and IL-1β and the mRNA expressions of these cytokines were reduced by 3b in a concentration-dependent manner. Furthermore, 3b attenuated the LPS-induced transcriptional activities of NF-κB and this was accompanied by parallel reductions in the degradation and phosphorylation of IκB-α, and consequently by a decrease in the nuclear translocation of the p65 subunit of NF-κB. Taken together, these results suggest that suppressions of the expressions of iNOS, COX-2, TNF-α, IL-6, and IL-1β via NF-κB inactivation are responsible for the anti-inflammatory effects of 3b.
Inhibition of electric eel AChE at 2 mg/ml by Ellman's method
|
Electrophorus electricus
|
-3.74
%
|
|
Journal : Bioorg. Med. Chem.
Title : Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Year : 2012
Volume : 20
Issue : 22
First Page : 6669
Last Page : 6679
Authors : Brunhofer G, Fallarero A, Karlsson D, Batista-Gonzalez A, Shinde P, Gopi Mohan C, Vuorela P.
Abstract : The presented project started by screening a library consisting of natural and natural based compounds for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. Active compounds were chemically clustered into groups and further tested on the human cholinesterases isoforms. The aim of the presented study was to identify compounds that could be used as leads to target two key mechanisms associated with the AD's pathogenesis simultaneously: cholinergic depletion and beta amyloid (Aβ) aggregation. Berberin, palmatine and chelerythrine, chemically clustered in the so-called isoquinoline group, showed promising cholinesterase inhibitory activity and were therefore further investigated. Moreover, the compounds demonstrated moderate to good inhibition of Aβ aggregation as well as the ability to disaggregate already preformed Aβ aggregates in an experimental set-up using HFIP as promotor of Aβ aggregates. Analysis of the kinetic mechanism of the AChE inhibition revealed chelerythrine as a mixed inhibitor. Using molecular docking studies, it was further proven that chelerythrine binds on both the catalytic site and the peripheral anionic site (PAS) of the AChE. In view of this, we went on to investigate its effect on inhibiting Aβ aggregation stimulated by AChE. Chelerythrine showed inhibition of fibril formation in the same range as propidium iodide. This approach enabled for the first time to identify a cholinesterase inhibitor of natural origin-chelerythrine-acting on AChE and BChE with a dual ability to inhibit Aβ aggregation as well as to disaggregate preformed Aβ aggregates. This compound could be an excellent starting point paving the way to develop more successful anti-AD drugs.
Inhibition of horse BChE at 2 mg/ml by Ellman's method
|
Equus caballus
|
15.03
%
|
|
Journal : Bioorg. Med. Chem.
Title : Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Year : 2012
Volume : 20
Issue : 22
First Page : 6669
Last Page : 6679
Authors : Brunhofer G, Fallarero A, Karlsson D, Batista-Gonzalez A, Shinde P, Gopi Mohan C, Vuorela P.
Abstract : The presented project started by screening a library consisting of natural and natural based compounds for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. Active compounds were chemically clustered into groups and further tested on the human cholinesterases isoforms. The aim of the presented study was to identify compounds that could be used as leads to target two key mechanisms associated with the AD's pathogenesis simultaneously: cholinergic depletion and beta amyloid (Aβ) aggregation. Berberin, palmatine and chelerythrine, chemically clustered in the so-called isoquinoline group, showed promising cholinesterase inhibitory activity and were therefore further investigated. Moreover, the compounds demonstrated moderate to good inhibition of Aβ aggregation as well as the ability to disaggregate already preformed Aβ aggregates in an experimental set-up using HFIP as promotor of Aβ aggregates. Analysis of the kinetic mechanism of the AChE inhibition revealed chelerythrine as a mixed inhibitor. Using molecular docking studies, it was further proven that chelerythrine binds on both the catalytic site and the peripheral anionic site (PAS) of the AChE. In view of this, we went on to investigate its effect on inhibiting Aβ aggregation stimulated by AChE. Chelerythrine showed inhibition of fibril formation in the same range as propidium iodide. This approach enabled for the first time to identify a cholinesterase inhibitor of natural origin-chelerythrine-acting on AChE and BChE with a dual ability to inhibit Aβ aggregation as well as to disaggregate preformed Aβ aggregates. This compound could be an excellent starting point paving the way to develop more successful anti-AD drugs.
Inhibition of Avian myeloblastosis virus reverse transcriptase
|
Avian myeloblastosis virus
|
95.0
%
|
|
Journal : Med Chem Res
Title : 3D-QSAR studies of natural flavonoid compounds as reverse transcriptase inhibitors
Year : 2012
Volume : 21
Issue : 5
First Page : 559
Last Page : 567
Authors : Phosrithong N, Samee W, Ungwitayatorn J
Inhibition of sodium fluorescein uptake in OATP1B1-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM
|
Cricetulus griseus
|
91.06
%
|
|
Journal : Mol. Pharmacol.
Title : Structure-based identification of OATP1B1/3 inhibitors.
Year : 2013
Volume : 83
Issue : 6
First Page : 1257
Last Page : 1267
Authors : De Bruyn T, van Westen GJ, Ijzerman AP, Stieger B, de Witte P, Augustijns PF, Annaert PP.
Abstract : Several recent studies show that inhibition of the hepatic transport proteins organic anion-transporting polypeptide 1B1 (OATP1B1) and 1B3 (OATP1B3) can result in clinically relevant drug-drug interactions (DDI). To avoid late-stage development drug failures due to OATP1B-mediated DDI, predictive in vitro and in silico methods should be implemented at an early stage of the drug candidate evaluation process. In the present study, we first developed a high-throughput in vitro transporter inhibition assay for the OATP1B subfamily. A total of 2000 compounds were tested as potential modulators of the uptake of the OATP1B substrate sodium fluorescein, in OATP1B1- or 1B3-transfected Chinese hamster ovary cells. At an equimolar substrate-inhibitor concentration of 10 µM, 212 and 139 molecules were identified as OATP1B1 and OATP1B3 inhibitors, respectively (minimum 50% inhibition). For 69 compounds, previously not identified as OATP1B inhibitors, concentration-dependent inhibition was also determined, yielding Ki values ranging from 0.06 to 6.5 µM. Based on these in vitro data, we subsequently developed a proteochemometrics-based in silico model, which predicted OATP1B inhibitors in the test group (20% of the dataset) with high specificity (86%) and sensitivity (78%). Moreover, several physicochemical compound properties and substructures related to OATP1B1/1B3 inhibition or inactivity were identified. Finally, model performance was prospectively verified with a set of 54 compounds not included in the original dataset. This validation indicated that 80 and 74% of the compounds were correctly classified for OATP1B1 and OATP1B3 inhibition, respectively.
Inhibition of sodium fluorescein uptake in OATP1B3-transfected CHO cells at an equimolar substrate-inhibitor concentration of 10 uM
|
Cricetulus griseus
|
90.2
%
|
|
Journal : Mol. Pharmacol.
Title : Structure-based identification of OATP1B1/3 inhibitors.
Year : 2013
Volume : 83
Issue : 6
First Page : 1257
Last Page : 1267
Authors : De Bruyn T, van Westen GJ, Ijzerman AP, Stieger B, de Witte P, Augustijns PF, Annaert PP.
Abstract : Several recent studies show that inhibition of the hepatic transport proteins organic anion-transporting polypeptide 1B1 (OATP1B1) and 1B3 (OATP1B3) can result in clinically relevant drug-drug interactions (DDI). To avoid late-stage development drug failures due to OATP1B-mediated DDI, predictive in vitro and in silico methods should be implemented at an early stage of the drug candidate evaluation process. In the present study, we first developed a high-throughput in vitro transporter inhibition assay for the OATP1B subfamily. A total of 2000 compounds were tested as potential modulators of the uptake of the OATP1B substrate sodium fluorescein, in OATP1B1- or 1B3-transfected Chinese hamster ovary cells. At an equimolar substrate-inhibitor concentration of 10 µM, 212 and 139 molecules were identified as OATP1B1 and OATP1B3 inhibitors, respectively (minimum 50% inhibition). For 69 compounds, previously not identified as OATP1B inhibitors, concentration-dependent inhibition was also determined, yielding Ki values ranging from 0.06 to 6.5 µM. Based on these in vitro data, we subsequently developed a proteochemometrics-based in silico model, which predicted OATP1B inhibitors in the test group (20% of the dataset) with high specificity (86%) and sensitivity (78%). Moreover, several physicochemical compound properties and substructures related to OATP1B1/1B3 inhibition or inactivity were identified. Finally, model performance was prospectively verified with a set of 54 compounds not included in the original dataset. This validation indicated that 80 and 74% of the compounds were correctly classified for OATP1B1 and OATP1B3 inhibition, respectively.
Antioxidant activity assessed as DPPH radical scavenging activity after 30 mins
|
None
|
18.2
ug.mL-1
|
|
Journal : Eur. J. Med. Chem.
Title : Localization and interaction of hydroxyflavones with lipid bilayer model membranes: a study using DSC and multinuclear NMR.
Year : 2014
Volume : 80
First Page : 285
Last Page : 294
Authors : Sinha R, Joshi A, Joshi UJ, Srivastava S, Govil G.
Abstract : The localization and interaction of six naturally occurring flavones (FLV, 5HF, 6HF, 7HF, CHY and BLN) in DPPC bilayers were studied using DSC and multi-nuclear NMR. DSC results indicate that FLV and 6HF interact with alkyl chains. The (1)H NMR shows interaction of flavones with the sn-glycero region. Ring current induced chemical shifts indicate that 6HF and BLN acquire parallel orientation in bilayers. 2D NOESY spectra indicate partitioning of the B-ring into the alkyl chain region. The DSC, NMR and binding studies indicate that 5HF and 7HF are located near head group region, while 6HF, CHY and BLN are located in the vicinity of sn-glycero region, and FLV is inserted deepest in the membrane.
Inhibition of recombinant HIV-1 integrase strand transfer activity using 32P 5' end-labeled linear 21'mer as substrate preincubated for 30 mins prior to substrate challenge by phosphorimaging analysis
|
Human immunodeficiency virus 1
|
780.0
nM
|
|
Journal : Bioorg. Med. Chem.
Title : Design and discovery of flavonoid-based HIV-1 integrase inhibitors targeting both the active site and the interaction with LEDGF/p75.
Year : 2014
Volume : 22
Issue : 12
First Page : 3146
Last Page : 3158
Authors : Li BW, Zhang FH, Serrao E, Chen H, Sanchez TW, Yang LM, Neamati N, Zheng YT, Wang H, Long YQ.
Abstract : HIV integrase (IN) is an essential enzyme for the viral replication. Currently, three IN inhibitors have been approved for treating HIV-1 infection. All three drugs selectively inhibit the strand transfer reaction by chelating a divalent metal ion in the enzyme active site. Flavonoids are a well-known class of natural products endowed with versatile biological activities. Their β-ketoenol or catechol structures can serve as a metal chelation motif and be exploited for the design of novel IN inhibitors. Using the metal chelation as a common pharmacophore, we introduced appropriate hydrophobic moieties into the flavonol core to design natural product-based novel IN inhibitors. We developed selective and efficient syntheses to generate a series of mono 3/5/7/3'/4'-substituted flavonoid derivatives. Most of these new compounds showed excellent HIV-1 IN inhibitory activity in enzyme-based assays and protected against HIV-1 infection in cell-based assays. The 7-morpholino substituted 7c showed effective antiviral activity (EC50=0.826 μg/mL) and high therapeutic index (TI>242). More significantly, these hydroxyflavones block the IN-LEDGF/p75 interaction with low- to sub-micromolar IC50 values and represent a novel scaffold to design new generation of drugs simultaneously targeting the catalytic site as well as protein-protein interaction domains.
Antiviral activity against HIV-1 3B infected in human C8166 cells assessed as inhibition of virus-induced cytopathogenicity by measuring syncytial cell number after 3 days by inverted microscopic analysis
|
Human immunodeficiency virus 1
|
1.67
ug.mL-1
|
|
Journal : Bioorg. Med. Chem.
Title : Design and discovery of flavonoid-based HIV-1 integrase inhibitors targeting both the active site and the interaction with LEDGF/p75.
Year : 2014
Volume : 22
Issue : 12
First Page : 3146
Last Page : 3158
Authors : Li BW, Zhang FH, Serrao E, Chen H, Sanchez TW, Yang LM, Neamati N, Zheng YT, Wang H, Long YQ.
Abstract : HIV integrase (IN) is an essential enzyme for the viral replication. Currently, three IN inhibitors have been approved for treating HIV-1 infection. All three drugs selectively inhibit the strand transfer reaction by chelating a divalent metal ion in the enzyme active site. Flavonoids are a well-known class of natural products endowed with versatile biological activities. Their β-ketoenol or catechol structures can serve as a metal chelation motif and be exploited for the design of novel IN inhibitors. Using the metal chelation as a common pharmacophore, we introduced appropriate hydrophobic moieties into the flavonol core to design natural product-based novel IN inhibitors. We developed selective and efficient syntheses to generate a series of mono 3/5/7/3'/4'-substituted flavonoid derivatives. Most of these new compounds showed excellent HIV-1 IN inhibitory activity in enzyme-based assays and protected against HIV-1 infection in cell-based assays. The 7-morpholino substituted 7c showed effective antiviral activity (EC50=0.826 μg/mL) and high therapeutic index (TI>242). More significantly, these hydroxyflavones block the IN-LEDGF/p75 interaction with low- to sub-micromolar IC50 values and represent a novel scaffold to design new generation of drugs simultaneously targeting the catalytic site as well as protein-protein interaction domains.
Antiviral activity against dengue virus 2 infected in african green monkey Vero cells assessed as reduction in viral replication dosed after adsorption with 200 FFU of virus for 1 hour by foci forming unit reduction assay
|
Dengue virus 2
|
6.46
ug.mL-1
|
|
Journal : Bioorg. Med. Chem.
Title : Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies.
Year : 2015
Volume : 23
Issue : 3
First Page : 466
Last Page : 470
Authors : de Sousa LR, Wu H, Nebo L, Fernandes JB, da Silva MF, Kiefer W, Kanitz M, Bodem J, Diederich WE, Schirmeister T, Vieira PC.
Abstract : NS2B-NS3 is a serine protease of the Dengue virus considered a key target in the search for new antiviral drugs. In this study flavonoids were found to be inhibitors of NS2B-NS3 proteases of the Dengue virus serotypes 2 and 3 with IC50 values ranging from 15 to 44 μM. Agathisflavone (1) and myricetin (4) turned out to be noncompetitive inhibitors of dengue virus serotype 2 NS2B-NS3 protease with Ki values of 11 and 4.7 μM, respectively. Docking studies propose a binding mode of the flavonoids in a specific allosteric binding site of the enzyme. Analysis of biomolecular interactions of quercetin (5) with NT647-NHS-labeled Dengue virus serotype 3 NS2B-NS3 protease by microscale thermophoresis experiments, yielded a dissociation constant KD of 20 μM. Our results help to understand the mechanism of inhibition of the Dengue virus serine protease by flavonoids, which is essential for the development of improved inhibitors.
Inhibition of soybean LOX using linoleic acid as substrate at 0.5 mM preincubated for 10 mins followed by substrate addition measured after 6 mins by spectrophotometric analysis
|
Glycine max
|
93.7
%
|
|
Journal : Eur. J. Med. Chem.
Title : Discovery of indole-based tetraarylimidazoles as potent inhibitors of urease with low antilipoxygenase activity.
Year : 2015
Volume : 102
First Page : 464
Last Page : 470
Authors : Naureen S, Chaudhry F, Asif N, Munawar MA, Ashraf M, Nasim FH, Arshad H, Khan MA.
Abstract : A series of tetraarylimidazoles (5A-5O) were prepared by one pot four component condensation reactions of 2-arylindole-3-carbaldehydes, substituted anilines, benzil and ammonium acetate in acetic acid. The synthesized compounds exhibited potent antiurease activity with IC50 values ranging from 0.12 ± 0.06 μM to 29.12 ± 0.18 μM as compared with thiourea. However, low inhibition profiles were observed for lipoxygenase. The data show that tetraarylimidazoles containing a substituted 2-penylindole have emerged as a new class of potent inhibitors of urease enzyme.
Inhibition of recombinant human PTP-sigma (residues 1367 to 1948) using para-nitrophenylphosphate as substrate at 20 uM for 60 mins by fluorescence analysis
|
Homo sapiens
|
80.5
%
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Identification of novel protein tyrosine phosphatase sigma inhibitors promoting neurite extension.
Year : 2016
Volume : 26
Issue : 1
First Page : 87
Last Page : 93
Authors : Lee HS, Ku B, Park TH, Park H, Choi JK, Chang KT, Kim CH, Ryu SE, Kim SJ.
Abstract : Protein tyrosine phosphatase sigma (PTPσ) is a potential target for the therapeutic treatment of neurological deficits associated with impaired neuronal recovery, as this protein is the receptor for chondroitin sulfate proteoglycan (CSPG), which is known to inhibit neuronal regeneration. Through a high-throughput screening approach started from 6400 representative compounds in the Korea Chemical Bank chemical library, we identified 11 novel PTPσ inhibitors that can be classified as flavonoid derivatives or analogs, with IC50 values ranging from 0.5 to 17.5μM. Biochemical assays and structure-based active site-docking simulation indicate that our inhibitors are accommodated at the catalytic active site of PTPσ as surrogates for the phosphotyrosine group. Treatments of these compounds on PC-12 neuronal cells led to the recovery of neurite extension attenuated by CSPG treatment, demonstrating their potential as antineurodegenerative agents.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of Caco-2 cells at 10 uM after 48 hours by high content imaging
|
Homo sapiens
|
18.0
%
|
|
Title : Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection
Year : 2020
Authors : Bernhard Ellinger, Denisa Bojkova, Andrea Zaliani, Jindrich Cinatl, Carsten Claussen, Sandra Westhaus, Jeanette Reinshagen, Maria Kuzikov, Markus Wolf, Gerd Geisslinger, Philip Gribbon, Sandra Ciesek
Abstract : To identify possible candidates for progression towards clinical studies against SARS-CoV-2, we screened a well-defined collection of 5632 compounds including 3488 compounds which have undergone clinical investigations (marketed drugs, phases 1 -3, and withdrawn) across 600 indications. Compounds were screened for their inhibition of viral induced cytotoxicity using the human epithelial colorectal adenocarcinoma cell line Caco-2 and a SARS-CoV-2 isolate. The primary screen of 5632 compounds gave 271 hits. A total of 64 compounds with IC50 <20 µM were identified, including 19 compounds with IC50 < 1 µM. Of this confirmed hit population, 90% have not yet been previously reported as active against SARS-CoV-2 in-vitro cell assays. Some 37 of the actives are launched drugs, 19 are in phases 1-3 and 10 pre-clinical. Several inhibitors were associated with modulation of host pathways including kinase signaling P53 activation, ubiquitin pathways and PDE activity modulation, with long chain acyl transferases were effective viral inhibitors.
Inhibition of F1F0-ATP synthase in Escherichia coli after 60 mins relative to control
|
Escherichia coli
|
100.0
%
|
|
Journal : Eur J Med Chem
Title : Recent advancements in mechanistic studies and structure activity relationship of FoF1 ATP synthase inhibitor as antimicrobial agent.
Year : 2019
Volume : 182
First Page : 111644
Last Page : 111644
Authors : Narang R, Kumar R, Kalra S, Nayak SK, Khatik GL, Kumar GN, Sudhakar K, Singh SK.
Abstract : The emergence of drug resistance in infectious microbial strains can be overcome by development of novel drug molecules against unexploited microbial target. The success of Bedaquiline in recent years, as FoF1 ATP synthase inhibitor against XDR and MDR mycobacterium strains, has resulted in further exploration to identify more potent and safe drug molecules against resistant strains. FoF1 ATP synthase is the main energy production enzyme in almost all eukaryotes and prokaryotes. Development of bacterial ATP synthase inhibitors is a safe approach, without causing harm to mammalian cells due to structural difference between bacterial and mammalian ATP synthase target sites. This review emphasizes on providing the structural insights for FoF1 ATP synthase of different prokaryotes and will help in the design of new potent antimicrobial agents with better efficacy. Further, applications of synthetic and natural active antimicrobial ATP synthase inhibitors, reported by different research groups are summarized. Their SAR and mode of actions are also analysed.
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
88.98
%
|
|
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
93.67
%
|
|
Title : Identification of inhibitors of SARS-Cov2 M-Pro enzymatic activity using a small molecule repurposing screen
Year : 2020
Authors : Maria Kuzikov, Elisa Costanzi, Jeanette Reinshagen, Francesca Esposito, Laura Vangeel, Markus Wolf, Bernhard Ellinger, Carsten Claussen, Gerd Geisslinger, Angela Corona, Daniela Iaconis, Carmine Talarico, Candida Manelfi, Rolando Cannalire, Giulia Rossetti, Jonas Gossen, Simone Albani, Francesco Musiani, Katja Herzog, Yang Ye, Barbara Giabbai, Nicola Demitri, Dirk Jochmans, Steven De Jonghe, Jasper Rymenants, Vincenzo Summa, Enzo Tramontano, Andrea R. Beccari, Pieter Leyssen, Paola Storici, Johan Neyts, Philip Gribbon, and Andrea Zaliani
Abstract : Compound repurposing is an important strategy being pursued in the identification of effective treatment against the SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (M-Pro), also termed 3CL-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyprotein into 11 non-structural proteins. We report the results of a screening campaign involving ca 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and chemicals regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, but we have also identified 68 compounds with IC50 lower than 1 uM and 127 compounds with IC50 lower than 5 uM. Profiling showed 67% of confirmed hits were selective (> 5 fold) against other Cys- and Ser- proteases (Chymotrypsin and Cathepsin-L) and MERS 3CL-Pro. Selected compounds were also analysed in their binding characteristics.
SARS-CoV-2 3CL-Pro protease inhibition IC50 determined by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
20.0
nM
|
|
Title : Identification of inhibitors of SARS-Cov2 M-Pro enzymatic activity using a small molecule repurposing screen
Year : 2020
Authors : Maria Kuzikov, Elisa Costanzi, Jeanette Reinshagen, Francesca Esposito, Laura Vangeel, Markus Wolf, Bernhard Ellinger, Carsten Claussen, Gerd Geisslinger, Angela Corona, Daniela Iaconis, Carmine Talarico, Candida Manelfi, Rolando Cannalire, Giulia Rossetti, Jonas Gossen, Simone Albani, Francesco Musiani, Katja Herzog, Yang Ye, Barbara Giabbai, Nicola Demitri, Dirk Jochmans, Steven De Jonghe, Jasper Rymenants, Vincenzo Summa, Enzo Tramontano, Andrea R. Beccari, Pieter Leyssen, Paola Storici, Johan Neyts, Philip Gribbon, and Andrea Zaliani
Abstract : Compound repurposing is an important strategy being pursued in the identification of effective treatment against the SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (M-Pro), also termed 3CL-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyprotein into 11 non-structural proteins. We report the results of a screening campaign involving ca 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and chemicals regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, but we have also identified 68 compounds with IC50 lower than 1 uM and 127 compounds with IC50 lower than 5 uM. Profiling showed 67% of confirmed hits were selective (> 5 fold) against other Cys- and Ser- proteases (Chymotrypsin and Cathepsin-L) and MERS 3CL-Pro. Selected compounds were also analysed in their binding characteristics.
MERS 3CL-Pro protease inhibition percentage at 10 µM by FRET kind of response from peptide substrate
|
Middle East respiratory syndrome
|
47.0
%
|
|
Title : Identification of inhibitors of SARS-Cov2 M-Pro enzymatic activity using a small molecule repurposing screen
Year : 2020
Authors : Maria Kuzikov, Elisa Costanzi, Jeanette Reinshagen, Francesca Esposito, Laura Vangeel, Markus Wolf, Bernhard Ellinger, Carsten Claussen, Gerd Geisslinger, Angela Corona, Daniela Iaconis, Carmine Talarico, Candida Manelfi, Rolando Cannalire, Giulia Rossetti, Jonas Gossen, Simone Albani, Francesco Musiani, Katja Herzog, Yang Ye, Barbara Giabbai, Nicola Demitri, Dirk Jochmans, Steven De Jonghe, Jasper Rymenants, Vincenzo Summa, Enzo Tramontano, Andrea R. Beccari, Pieter Leyssen, Paola Storici, Johan Neyts, Philip Gribbon, and Andrea Zaliani
Abstract : Compound repurposing is an important strategy being pursued in the identification of effective treatment against the SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (M-Pro), also termed 3CL-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyprotein into 11 non-structural proteins. We report the results of a screening campaign involving ca 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and chemicals regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, but we have also identified 68 compounds with IC50 lower than 1 uM and 127 compounds with IC50 lower than 5 uM. Profiling showed 67% of confirmed hits were selective (> 5 fold) against other Cys- and Ser- proteases (Chymotrypsin and Cathepsin-L) and MERS 3CL-Pro. Selected compounds were also analysed in their binding characteristics.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
1.2
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
0.7
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
1.2
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
0.7
%
|
|
Title : Cytopathic SARS-Cov2 screening on VERO-E6 cells in a large repurposing effort
Year : 2020
Authors : Andrea Zaliani, Laura Vangeel, Jeanette Reinshagen, Daniela Iaconis, Maria Kuzikov, Oliver Keminer, Markus Wolf, Bernhard Ellinger, Francesca Esposito, Angela Corona, Enzo Tramontano, Candida Manelfi, Katja Herzog, Dirk Jochmans, Steven De Jonghe, Winston Chiu, Thibault Francken, Joost Schepers, Caroline Collard, Kayvan Abbasi, Carsten Claussen , Vincenzo Summa, Andrea R. Beccari, Johan Neyts, Philip Gribbon and Pieter Leyssen
Abstract : Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.
Inhibition of cytochrome c (unknown origin) assessed as reduction in cyt c-CL complex formation at 10 uM incubated for 15 mins in presence of cardiolipin by Trp-59 fluorescence assay relative to control
|
Homo sapiens
|
91.0
%
|
|
Journal : Bioorg Med Chem
Title : A role of flavonoids in cytochrome c-cardiolipin interactions.
Year : 2021
Volume : 33
First Page : 116043
Last Page : 116043
Authors : Rice M,Wong B,Oja M,Samuels K,Williams AK,Fong J,Sapse AM,Maran U,Korobkova EA
Abstract : The processes preceding the detachment of cytochrome c (cyt c) from the inner mitochondrial membrane in intrinsic apoptosis involve peroxidation of cardiolipin (CL) catalyzed by cyt c-CL complex. In the present work, we studied the effect of 17 dietary flavonoids on the peroxidase activity of cyt c bound to liposomes. Specifically, we explored the relationship between peroxidase activity and flavonoids' (1) potential to modulate cyt c unfolding, (2) effect on the oxidation state of heme iron, (3) membrane permeability, (4) membrane binding energy, and (5) structure. The measurements revealed that flavones, flavonols, and flavanols were the strongest, while isoflavones were the weakest inhibitors of the oxidation. Flavonoids' peroxidase inhibition activity correlated positively with their potential to suppress Trp-59 fluorescence in cyt c as well as the number of OH groups. Hydrophilic flavonoids, such as catechin, having the lowest membrane permeability and the strongest binding with phosphocholine (PC) based on the quantum chemical calculations exhibited the strongest inhibition of Amplex Red (AR) peroxidation, suggesting a membrane-protective function of flavonoids at the surface. The results of the present research specify basic principles for the design of molecules that will control the catalytic oxidation of lipids in mitochondrial membranes. These principles take into account the number of hydroxyl groups and hydrophilicity of flavonoids.
Inhibition of cytochrome c (unknown origin) assessed as reduction in cyt c-CL peroxidase activity at 10 uM up to 20 mins in presence of cardiolipin by Amplex red staining based fluorescence assay relative to control
|
Homo sapiens
|
71.0
%
|
|
Journal : Bioorg Med Chem
Title : A role of flavonoids in cytochrome c-cardiolipin interactions.
Year : 2021
Volume : 33
First Page : 116043
Last Page : 116043
Authors : Rice M,Wong B,Oja M,Samuels K,Williams AK,Fong J,Sapse AM,Maran U,Korobkova EA
Abstract : The processes preceding the detachment of cytochrome c (cyt c) from the inner mitochondrial membrane in intrinsic apoptosis involve peroxidation of cardiolipin (CL) catalyzed by cyt c-CL complex. In the present work, we studied the effect of 17 dietary flavonoids on the peroxidase activity of cyt c bound to liposomes. Specifically, we explored the relationship between peroxidase activity and flavonoids' (1) potential to modulate cyt c unfolding, (2) effect on the oxidation state of heme iron, (3) membrane permeability, (4) membrane binding energy, and (5) structure. The measurements revealed that flavones, flavonols, and flavanols were the strongest, while isoflavones were the weakest inhibitors of the oxidation. Flavonoids' peroxidase inhibition activity correlated positively with their potential to suppress Trp-59 fluorescence in cyt c as well as the number of OH groups. Hydrophilic flavonoids, such as catechin, having the lowest membrane permeability and the strongest binding with phosphocholine (PC) based on the quantum chemical calculations exhibited the strongest inhibition of Amplex Red (AR) peroxidation, suggesting a membrane-protective function of flavonoids at the surface. The results of the present research specify basic principles for the design of molecules that will control the catalytic oxidation of lipids in mitochondrial membranes. These principles take into account the number of hydroxyl groups and hydrophilicity of flavonoids.
Inhibition of cytochrome c (unknown origin) assessed as reduction reduction of cyt c from its ferric state to ferrous state at 10 uM incubated for 20 mins in presence of cardiolipin by UV-vis Spectrophotometric assay relative to control
|
Homo sapiens
|
79.0
%
|
|
Journal : Bioorg Med Chem
Title : A role of flavonoids in cytochrome c-cardiolipin interactions.
Year : 2021
Volume : 33
First Page : 116043
Last Page : 116043
Authors : Rice M,Wong B,Oja M,Samuels K,Williams AK,Fong J,Sapse AM,Maran U,Korobkova EA
Abstract : The processes preceding the detachment of cytochrome c (cyt c) from the inner mitochondrial membrane in intrinsic apoptosis involve peroxidation of cardiolipin (CL) catalyzed by cyt c-CL complex. In the present work, we studied the effect of 17 dietary flavonoids on the peroxidase activity of cyt c bound to liposomes. Specifically, we explored the relationship between peroxidase activity and flavonoids' (1) potential to modulate cyt c unfolding, (2) effect on the oxidation state of heme iron, (3) membrane permeability, (4) membrane binding energy, and (5) structure. The measurements revealed that flavones, flavonols, and flavanols were the strongest, while isoflavones were the weakest inhibitors of the oxidation. Flavonoids' peroxidase inhibition activity correlated positively with their potential to suppress Trp-59 fluorescence in cyt c as well as the number of OH groups. Hydrophilic flavonoids, such as catechin, having the lowest membrane permeability and the strongest binding with phosphocholine (PC) based on the quantum chemical calculations exhibited the strongest inhibition of Amplex Red (AR) peroxidation, suggesting a membrane-protective function of flavonoids at the surface. The results of the present research specify basic principles for the design of molecules that will control the catalytic oxidation of lipids in mitochondrial membranes. These principles take into account the number of hydroxyl groups and hydrophilicity of flavonoids.
Inhibition of P4 induced antiproliferative activity against CD-1 mouse uterine epithelial cell at 25 mg/kg, ip for 7 days by immunohistochemistry method
|
Mus musculus
|
32.0
%
|
|