Inhibition of A431 cell proliferation
|
Homo sapiens
|
0.083
ug.mL-1
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Syntheses and EGFR and HER-2 kinase inhibitory activities of 4-anilinoquinoline-3-carbonitriles: analogues of three important 4-anilinoquinazolines currently undergoing clinical evaluation as therapeutic antitumor agents.
Year : 2002
Volume : 12
Issue : 20
First Page : 2893
Last Page : 2897
Authors : Wissner A, Brawner Floyd MB, Rabindran SK, Nilakantan R, Greenberger LM, Shen R, Wang YF, Tsou HR.
Abstract : The syntheses and biological evaluations of 4-anilinoquinoline-3-carbonitrile analogues of the three clinical lead 4-anilinoquinazolines Iressa, Tarceva, and CI-1033 are described. The EGFR and HER-2 kinase inhibitory activities and the cell growth inhibition of the two series are compared with each other and with the clinical lead EKB-569. Similar activities are observed between these two series.
Inhibition of EGF-stimulated autophosphorylation of EGFR enzyme in A431 cells detected by immunoblotting
|
None
|
7.4
nM
|
|
Journal : J. Med. Chem.
Title : Tyrosine kinase inhibitors. 17. Irreversible inhibitors of the epidermal growth factor receptor: 4-(phenylamino)quinazoline- and 4-(phenylamino)pyrido[3,2-d]pyrimidine-6-acrylamides bearing additional solubilizing functions.
Year : 2000
Volume : 43
Issue : 7
First Page : 1380
Last Page : 1397
Authors : Smaill JB, Rewcastle GW, Loo JA, Greis KD, Chan OH, Reyner EL, Lipka E, Showalter HD, Vincent PW, Elliott WL, Denny WA.
Abstract : 4-Anilinoquinazoline- and 4-anilinopyrido[3,2-d]pyrimidine-6-acrylamides substituted with solubilizing 7-alkylamine or 7-alkoxyamine side chains were prepared by reaction of the corresponding 6-amines with acrylic acid or acrylic acid anhydrides. In the pyrido[3,2-d]pyrimidine series, the intermediate 6-amino-7-alkylamines were prepared from 7-bromo-6-fluoropyrido[3,2-d]pyrimidine via Stille coupling with the appropriate stannane under palladium(0) catalysis. This proved a versatile method for the introduction of cationic solubilizing side chains. The compounds were evaluated for their inhibition of phosphorylation of the isolated EGFR enzyme and for inhibition of EGF-stimulated autophosphorylation of EGFR in A431 cells and of heregulin-stimulated autophosphorylation of erbB2 in MDA-MB 453 cells. Quinazoline analogues with 7-alkoxyamine solubilizing groups were potent irreversible inhibitors of the isolated EGFR enzyme, with IC(50[app]) values from 2 to 4 nM, and potently inhibited both EGFR and erbB2 autophosphorylation in cells. 7-Alkylamino- and 7-alkoxyaminopyrido[3,2-d]pyrimidines were also irreversible inhibitors with equal or superior potency against the isolated enzyme but were less effective in the cellular autophosphorylation assays. Both quinazoline- and pyrido[3,2-d]pyrimidine-6-acrylamides bound at the ATP site alkylating cysteine 773, as shown by electrospray ionization mass spectrometry, and had similar rates of absorptive and secretory transport in Caco-2 cells. A comparison of two 7-propoxymorpholide analogues showed that the pyrido[3,2-d]pyrimidine-6-acrylamide had greater amide instability and higher acrylamide reactivity, being converted to glutathione adducts in cells more rapidly than the corresponding quinazoline. This difference may contribute to the observed lower cellular potency of the pyrido[3,2-d]pyrimidine-6-acrylamides. Selected compounds showed high in vivo activity against A431 xenografts on oral dosing, with the quinazolines being superior to the pyrido[3,2-d]pyrimidines. Overall, the quinazolines proved superior to previous analogues in terms of aqueous solubility, potency, and in vivo antitumor activity, and one example (CI 1033) has been selected for clinical evaluation.
Inhibition of phosphorylation of a polyglutamic acid/tyrosine random copolymer by EGFR enzyme prepared from human A431 carcinoma cell vesicles by immunoaffinity chromatography
|
None
|
1.5
nM
|
|
Journal : J. Med. Chem.
Title : Tyrosine kinase inhibitors. 17. Irreversible inhibitors of the epidermal growth factor receptor: 4-(phenylamino)quinazoline- and 4-(phenylamino)pyrido[3,2-d]pyrimidine-6-acrylamides bearing additional solubilizing functions.
Year : 2000
Volume : 43
Issue : 7
First Page : 1380
Last Page : 1397
Authors : Smaill JB, Rewcastle GW, Loo JA, Greis KD, Chan OH, Reyner EL, Lipka E, Showalter HD, Vincent PW, Elliott WL, Denny WA.
Abstract : 4-Anilinoquinazoline- and 4-anilinopyrido[3,2-d]pyrimidine-6-acrylamides substituted with solubilizing 7-alkylamine or 7-alkoxyamine side chains were prepared by reaction of the corresponding 6-amines with acrylic acid or acrylic acid anhydrides. In the pyrido[3,2-d]pyrimidine series, the intermediate 6-amino-7-alkylamines were prepared from 7-bromo-6-fluoropyrido[3,2-d]pyrimidine via Stille coupling with the appropriate stannane under palladium(0) catalysis. This proved a versatile method for the introduction of cationic solubilizing side chains. The compounds were evaluated for their inhibition of phosphorylation of the isolated EGFR enzyme and for inhibition of EGF-stimulated autophosphorylation of EGFR in A431 cells and of heregulin-stimulated autophosphorylation of erbB2 in MDA-MB 453 cells. Quinazoline analogues with 7-alkoxyamine solubilizing groups were potent irreversible inhibitors of the isolated EGFR enzyme, with IC(50[app]) values from 2 to 4 nM, and potently inhibited both EGFR and erbB2 autophosphorylation in cells. 7-Alkylamino- and 7-alkoxyaminopyrido[3,2-d]pyrimidines were also irreversible inhibitors with equal or superior potency against the isolated enzyme but were less effective in the cellular autophosphorylation assays. Both quinazoline- and pyrido[3,2-d]pyrimidine-6-acrylamides bound at the ATP site alkylating cysteine 773, as shown by electrospray ionization mass spectrometry, and had similar rates of absorptive and secretory transport in Caco-2 cells. A comparison of two 7-propoxymorpholide analogues showed that the pyrido[3,2-d]pyrimidine-6-acrylamide had greater amide instability and higher acrylamide reactivity, being converted to glutathione adducts in cells more rapidly than the corresponding quinazoline. This difference may contribute to the observed lower cellular potency of the pyrido[3,2-d]pyrimidine-6-acrylamides. Selected compounds showed high in vivo activity against A431 xenografts on oral dosing, with the quinazolines being superior to the pyrido[3,2-d]pyrimidines. Overall, the quinazolines proved superior to previous analogues in terms of aqueous solubility, potency, and in vivo antitumor activity, and one example (CI 1033) has been selected for clinical evaluation.
Irreversible inhibition of formation of phosphorylated EGFR enzyme in A431 cells 8 hr after washing cells free of the inhibitor
|
None
|
80.0
%
|
|
Journal : J. Med. Chem.
Title : Tyrosine kinase inhibitors. 17. Irreversible inhibitors of the epidermal growth factor receptor: 4-(phenylamino)quinazoline- and 4-(phenylamino)pyrido[3,2-d]pyrimidine-6-acrylamides bearing additional solubilizing functions.
Year : 2000
Volume : 43
Issue : 7
First Page : 1380
Last Page : 1397
Authors : Smaill JB, Rewcastle GW, Loo JA, Greis KD, Chan OH, Reyner EL, Lipka E, Showalter HD, Vincent PW, Elliott WL, Denny WA.
Abstract : 4-Anilinoquinazoline- and 4-anilinopyrido[3,2-d]pyrimidine-6-acrylamides substituted with solubilizing 7-alkylamine or 7-alkoxyamine side chains were prepared by reaction of the corresponding 6-amines with acrylic acid or acrylic acid anhydrides. In the pyrido[3,2-d]pyrimidine series, the intermediate 6-amino-7-alkylamines were prepared from 7-bromo-6-fluoropyrido[3,2-d]pyrimidine via Stille coupling with the appropriate stannane under palladium(0) catalysis. This proved a versatile method for the introduction of cationic solubilizing side chains. The compounds were evaluated for their inhibition of phosphorylation of the isolated EGFR enzyme and for inhibition of EGF-stimulated autophosphorylation of EGFR in A431 cells and of heregulin-stimulated autophosphorylation of erbB2 in MDA-MB 453 cells. Quinazoline analogues with 7-alkoxyamine solubilizing groups were potent irreversible inhibitors of the isolated EGFR enzyme, with IC(50[app]) values from 2 to 4 nM, and potently inhibited both EGFR and erbB2 autophosphorylation in cells. 7-Alkylamino- and 7-alkoxyaminopyrido[3,2-d]pyrimidines were also irreversible inhibitors with equal or superior potency against the isolated enzyme but were less effective in the cellular autophosphorylation assays. Both quinazoline- and pyrido[3,2-d]pyrimidine-6-acrylamides bound at the ATP site alkylating cysteine 773, as shown by electrospray ionization mass spectrometry, and had similar rates of absorptive and secretory transport in Caco-2 cells. A comparison of two 7-propoxymorpholide analogues showed that the pyrido[3,2-d]pyrimidine-6-acrylamide had greater amide instability and higher acrylamide reactivity, being converted to glutathione adducts in cells more rapidly than the corresponding quinazoline. This difference may contribute to the observed lower cellular potency of the pyrido[3,2-d]pyrimidine-6-acrylamides. Selected compounds showed high in vivo activity against A431 xenografts on oral dosing, with the quinazolines being superior to the pyrido[3,2-d]pyrimidines. Overall, the quinazolines proved superior to previous analogues in terms of aqueous solubility, potency, and in vivo antitumor activity, and one example (CI 1033) has been selected for clinical evaluation.
Inhibition of autophosphorylation of ERBB2 receptor kinase in MDA-MB 453 cells
|
None
|
9.0
nM
|
|
Journal : J. Med. Chem.
Title : Tyrosine kinase inhibitors. 17. Irreversible inhibitors of the epidermal growth factor receptor: 4-(phenylamino)quinazoline- and 4-(phenylamino)pyrido[3,2-d]pyrimidine-6-acrylamides bearing additional solubilizing functions.
Year : 2000
Volume : 43
Issue : 7
First Page : 1380
Last Page : 1397
Authors : Smaill JB, Rewcastle GW, Loo JA, Greis KD, Chan OH, Reyner EL, Lipka E, Showalter HD, Vincent PW, Elliott WL, Denny WA.
Abstract : 4-Anilinoquinazoline- and 4-anilinopyrido[3,2-d]pyrimidine-6-acrylamides substituted with solubilizing 7-alkylamine or 7-alkoxyamine side chains were prepared by reaction of the corresponding 6-amines with acrylic acid or acrylic acid anhydrides. In the pyrido[3,2-d]pyrimidine series, the intermediate 6-amino-7-alkylamines were prepared from 7-bromo-6-fluoropyrido[3,2-d]pyrimidine via Stille coupling with the appropriate stannane under palladium(0) catalysis. This proved a versatile method for the introduction of cationic solubilizing side chains. The compounds were evaluated for their inhibition of phosphorylation of the isolated EGFR enzyme and for inhibition of EGF-stimulated autophosphorylation of EGFR in A431 cells and of heregulin-stimulated autophosphorylation of erbB2 in MDA-MB 453 cells. Quinazoline analogues with 7-alkoxyamine solubilizing groups were potent irreversible inhibitors of the isolated EGFR enzyme, with IC(50[app]) values from 2 to 4 nM, and potently inhibited both EGFR and erbB2 autophosphorylation in cells. 7-Alkylamino- and 7-alkoxyaminopyrido[3,2-d]pyrimidines were also irreversible inhibitors with equal or superior potency against the isolated enzyme but were less effective in the cellular autophosphorylation assays. Both quinazoline- and pyrido[3,2-d]pyrimidine-6-acrylamides bound at the ATP site alkylating cysteine 773, as shown by electrospray ionization mass spectrometry, and had similar rates of absorptive and secretory transport in Caco-2 cells. A comparison of two 7-propoxymorpholide analogues showed that the pyrido[3,2-d]pyrimidine-6-acrylamide had greater amide instability and higher acrylamide reactivity, being converted to glutathione adducts in cells more rapidly than the corresponding quinazoline. This difference may contribute to the observed lower cellular potency of the pyrido[3,2-d]pyrimidine-6-acrylamides. Selected compounds showed high in vivo activity against A431 xenografts on oral dosing, with the quinazolines being superior to the pyrido[3,2-d]pyrimidines. Overall, the quinazolines proved superior to previous analogues in terms of aqueous solubility, potency, and in vivo antitumor activity, and one example (CI 1033) has been selected for clinical evaluation.
Inhibition of Epidermal Growth Factor Receptor (EGFR) autophosphorylation
|
Homo sapiens
|
74.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Syntheses and EGFR and HER-2 kinase inhibitory activities of 4-anilinoquinoline-3-carbonitriles: analogues of three important 4-anilinoquinazolines currently undergoing clinical evaluation as therapeutic antitumor agents.
Year : 2002
Volume : 12
Issue : 20
First Page : 2893
Last Page : 2897
Authors : Wissner A, Brawner Floyd MB, Rabindran SK, Nilakantan R, Greenberger LM, Shen R, Wang YF, Tsou HR.
Abstract : The syntheses and biological evaluations of 4-anilinoquinoline-3-carbonitrile analogues of the three clinical lead 4-anilinoquinazolines Iressa, Tarceva, and CI-1033 are described. The EGFR and HER-2 kinase inhibitory activities and the cell growth inhibition of the two series are compared with each other and with the clinical lead EKB-569. Similar activities are observed between these two series.
Inhibition of human epidermal growth factor receptor-2 autophosphorylation
|
Homo sapiens
|
529.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Syntheses and EGFR and HER-2 kinase inhibitory activities of 4-anilinoquinoline-3-carbonitriles: analogues of three important 4-anilinoquinazolines currently undergoing clinical evaluation as therapeutic antitumor agents.
Year : 2002
Volume : 12
Issue : 20
First Page : 2893
Last Page : 2897
Authors : Wissner A, Brawner Floyd MB, Rabindran SK, Nilakantan R, Greenberger LM, Shen R, Wang YF, Tsou HR.
Abstract : The syntheses and biological evaluations of 4-anilinoquinoline-3-carbonitrile analogues of the three clinical lead 4-anilinoquinazolines Iressa, Tarceva, and CI-1033 are described. The EGFR and HER-2 kinase inhibitory activities and the cell growth inhibition of the two series are compared with each other and with the clinical lead EKB-569. Similar activities are observed between these two series.
Inhibition of SW-620 cell proliferation
|
Homo sapiens
|
1.45
ug.mL-1
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Syntheses and EGFR and HER-2 kinase inhibitory activities of 4-anilinoquinoline-3-carbonitriles: analogues of three important 4-anilinoquinazolines currently undergoing clinical evaluation as therapeutic antitumor agents.
Year : 2002
Volume : 12
Issue : 20
First Page : 2893
Last Page : 2897
Authors : Wissner A, Brawner Floyd MB, Rabindran SK, Nilakantan R, Greenberger LM, Shen R, Wang YF, Tsou HR.
Abstract : The syntheses and biological evaluations of 4-anilinoquinoline-3-carbonitrile analogues of the three clinical lead 4-anilinoquinazolines Iressa, Tarceva, and CI-1033 are described. The EGFR and HER-2 kinase inhibitory activities and the cell growth inhibition of the two series are compared with each other and with the clinical lead EKB-569. Similar activities are observed between these two series.
Inhibition of SKBR-3 cell proliferation
|
Homo sapiens
|
0.102
ug.mL-1
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Syntheses and EGFR and HER-2 kinase inhibitory activities of 4-anilinoquinoline-3-carbonitriles: analogues of three important 4-anilinoquinazolines currently undergoing clinical evaluation as therapeutic antitumor agents.
Year : 2002
Volume : 12
Issue : 20
First Page : 2893
Last Page : 2897
Authors : Wissner A, Brawner Floyd MB, Rabindran SK, Nilakantan R, Greenberger LM, Shen R, Wang YF, Tsou HR.
Abstract : The syntheses and biological evaluations of 4-anilinoquinoline-3-carbonitrile analogues of the three clinical lead 4-anilinoquinazolines Iressa, Tarceva, and CI-1033 are described. The EGFR and HER-2 kinase inhibitory activities and the cell growth inhibition of the two series are compared with each other and with the clinical lead EKB-569. Similar activities are observed between these two series.
Average Binding Constant for BTK; NA=Not Active at 10 uM
|
Homo sapiens
|
750.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for EPHA6; NA=Not Active at 10 uM
|
Homo sapiens
|
72.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for SLK; NA=Not Active at 10 uM
|
Homo sapiens
|
440.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for EPHA4; NA=Not Active at 10 uM
|
Homo sapiens
|
310.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for EPHA5; NA=Not Active at 10 uM
|
Homo sapiens
|
270.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for EPHA8; NA=Not Active at 10 uM
|
Homo sapiens
|
790.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for EPHA3; NA=Not Active at 10 uM
|
Homo sapiens
|
650.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for STK10; NA=Not Active at 10 uM
|
Homo sapiens
|
430.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for RIPK2; NA=Not Active at 10 uM
|
Homo sapiens
|
330.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for GAK; NA=Not Active at 10 uM
|
Homo sapiens
|
44.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for LYN; NA=Not Active at 10 uM
|
Homo sapiens
|
780.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for LCK; NA=Not Active at 10 uM
|
Homo sapiens
|
560.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for ERBB2; NA=Not Active at 10 uM
|
Homo sapiens
|
8.4
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for EGFR; NA=Not Active at 10 uM
|
Homo sapiens
|
1.4
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for ABL1; NA=Not Active at 10 uM
|
Homo sapiens
|
340.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for ABL1(Q252H); NA=Not Active at 10 uM
|
Homo sapiens
|
470.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for ABL1(H396P); NA=Not Active at 10 uM
|
Homo sapiens
|
320.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for ABL1(M351T); NA=Not Active at 10 uM
|
Homo sapiens
|
560.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for ABL1(T315I); NA=Not Active at 10 uM
|
Homo sapiens
|
290.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for ABL1(Y253F); NA=Not Active at 10 uM
|
Homo sapiens
|
420.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Average Binding Constant for SRC; NA=Not Active at 10 uM
|
Homo sapiens
|
760.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A small molecule-kinase interaction map for clinical kinase inhibitors.
Year : 2005
Volume : 23
Issue : 3
First Page : 329
Last Page : 336
Authors : Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ.
Abstract : Kinase inhibitors show great promise as a new class of therapeutics. Here we describe an efficient way to determine kinase inhibitor specificity by measuring binding of small molecules to the ATP site of kinases. We have profiled 20 kinase inhibitors, including 16 that are approved drugs or in clinical development, against a panel of 119 protein kinases. We find that specificity varies widely and is not strongly correlated with chemical structure or the identity of the intended target. Many novel interactions were identified, including tight binding of the p38 inhibitor BIRB-796 to an imatinib-resistant variant of the ABL kinase, and binding of imatinib to the SRC-family kinase LCK. We also show that mutations in the epidermal growth factor receptor (EGFR) found in gefitinib-responsive patients do not affect the binding affinity of gefitinib or erlotinib. Our results represent a systematic small molecule-protein interaction map for clinical compounds across a large number of related proteins.
Inhibition of EGFR
|
None
|
2.3
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Clinical stage EGFR inhibitors irreversibly alkylate Bmx kinase.
Year : 2008
Volume : 18
Issue : 22
First Page : 5916
Last Page : 5919
Authors : Hur W, Velentza A, Kim S, Flatauer L, Jiang X, Valente D, Mason DE, Suzuki M, Larson B, Zhang J, Zagorska A, Didonato M, Nagle A, Warmuth M, Balk SP, Peters EC, Gray NS.
Abstract : Irreversible HER/erbB inhibitors selectively inhibit HER-family kinases by targeting a unique cysteine residue located within the ATP-binding pocket. Sequence alignment reveals that this rare cysteine is also present in ten other protein kinases including all five Tec-family members. We demonstrate that the Tec-family kinase Bmx is potently inhibited by irreversible modification at Cys496 by clinical stage EGFR inhibitors such as CI-1033. This cross-reactivity may have significant clinical implications.
Inhibition of HER2
|
None
|
48.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Clinical stage EGFR inhibitors irreversibly alkylate Bmx kinase.
Year : 2008
Volume : 18
Issue : 22
First Page : 5916
Last Page : 5919
Authors : Hur W, Velentza A, Kim S, Flatauer L, Jiang X, Valente D, Mason DE, Suzuki M, Larson B, Zhang J, Zagorska A, Didonato M, Nagle A, Warmuth M, Balk SP, Peters EC, Gray NS.
Abstract : Irreversible HER/erbB inhibitors selectively inhibit HER-family kinases by targeting a unique cysteine residue located within the ATP-binding pocket. Sequence alignment reveals that this rare cysteine is also present in ten other protein kinases including all five Tec-family members. We demonstrate that the Tec-family kinase Bmx is potently inhibited by irreversible modification at Cys496 by clinical stage EGFR inhibitors such as CI-1033. This cross-reactivity may have significant clinical implications.
Inhibition of HER4
|
None
|
14.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Clinical stage EGFR inhibitors irreversibly alkylate Bmx kinase.
Year : 2008
Volume : 18
Issue : 22
First Page : 5916
Last Page : 5919
Authors : Hur W, Velentza A, Kim S, Flatauer L, Jiang X, Valente D, Mason DE, Suzuki M, Larson B, Zhang J, Zagorska A, Didonato M, Nagle A, Warmuth M, Balk SP, Peters EC, Gray NS.
Abstract : Irreversible HER/erbB inhibitors selectively inhibit HER-family kinases by targeting a unique cysteine residue located within the ATP-binding pocket. Sequence alignment reveals that this rare cysteine is also present in ten other protein kinases including all five Tec-family members. We demonstrate that the Tec-family kinase Bmx is potently inhibited by irreversible modification at Cys496 by clinical stage EGFR inhibitors such as CI-1033. This cross-reactivity may have significant clinical implications.
Inhibition of Blk
|
None
|
50.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Clinical stage EGFR inhibitors irreversibly alkylate Bmx kinase.
Year : 2008
Volume : 18
Issue : 22
First Page : 5916
Last Page : 5919
Authors : Hur W, Velentza A, Kim S, Flatauer L, Jiang X, Valente D, Mason DE, Suzuki M, Larson B, Zhang J, Zagorska A, Didonato M, Nagle A, Warmuth M, Balk SP, Peters EC, Gray NS.
Abstract : Irreversible HER/erbB inhibitors selectively inhibit HER-family kinases by targeting a unique cysteine residue located within the ATP-binding pocket. Sequence alignment reveals that this rare cysteine is also present in ten other protein kinases including all five Tec-family members. We demonstrate that the Tec-family kinase Bmx is potently inhibited by irreversible modification at Cys496 by clinical stage EGFR inhibitors such as CI-1033. This cross-reactivity may have significant clinical implications.
Inhibition of Bmx
|
None
|
586.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Clinical stage EGFR inhibitors irreversibly alkylate Bmx kinase.
Year : 2008
Volume : 18
Issue : 22
First Page : 5916
Last Page : 5919
Authors : Hur W, Velentza A, Kim S, Flatauer L, Jiang X, Valente D, Mason DE, Suzuki M, Larson B, Zhang J, Zagorska A, Didonato M, Nagle A, Warmuth M, Balk SP, Peters EC, Gray NS.
Abstract : Irreversible HER/erbB inhibitors selectively inhibit HER-family kinases by targeting a unique cysteine residue located within the ATP-binding pocket. Sequence alignment reveals that this rare cysteine is also present in ten other protein kinases including all five Tec-family members. We demonstrate that the Tec-family kinase Bmx is potently inhibited by irreversible modification at Cys496 by clinical stage EGFR inhibitors such as CI-1033. This cross-reactivity may have significant clinical implications.
Inhibition of Btk
|
None
|
185.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Clinical stage EGFR inhibitors irreversibly alkylate Bmx kinase.
Year : 2008
Volume : 18
Issue : 22
First Page : 5916
Last Page : 5919
Authors : Hur W, Velentza A, Kim S, Flatauer L, Jiang X, Valente D, Mason DE, Suzuki M, Larson B, Zhang J, Zagorska A, Didonato M, Nagle A, Warmuth M, Balk SP, Peters EC, Gray NS.
Abstract : Irreversible HER/erbB inhibitors selectively inhibit HER-family kinases by targeting a unique cysteine residue located within the ATP-binding pocket. Sequence alignment reveals that this rare cysteine is also present in ten other protein kinases including all five Tec-family members. We demonstrate that the Tec-family kinase Bmx is potently inhibited by irreversible modification at Cys496 by clinical stage EGFR inhibitors such as CI-1033. This cross-reactivity may have significant clinical implications.
Inhibition of Blk expressed in mouse BAF3 cells assessed as cytotoxicity
|
None
|
29.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Clinical stage EGFR inhibitors irreversibly alkylate Bmx kinase.
Year : 2008
Volume : 18
Issue : 22
First Page : 5916
Last Page : 5919
Authors : Hur W, Velentza A, Kim S, Flatauer L, Jiang X, Valente D, Mason DE, Suzuki M, Larson B, Zhang J, Zagorska A, Didonato M, Nagle A, Warmuth M, Balk SP, Peters EC, Gray NS.
Abstract : Irreversible HER/erbB inhibitors selectively inhibit HER-family kinases by targeting a unique cysteine residue located within the ATP-binding pocket. Sequence alignment reveals that this rare cysteine is also present in ten other protein kinases including all five Tec-family members. We demonstrate that the Tec-family kinase Bmx is potently inhibited by irreversible modification at Cys496 by clinical stage EGFR inhibitors such as CI-1033. This cross-reactivity may have significant clinical implications.
Inhibition of Bmx expressed in mouse BAF3 cells assessed as cytotoxicity
|
None
|
62.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Clinical stage EGFR inhibitors irreversibly alkylate Bmx kinase.
Year : 2008
Volume : 18
Issue : 22
First Page : 5916
Last Page : 5919
Authors : Hur W, Velentza A, Kim S, Flatauer L, Jiang X, Valente D, Mason DE, Suzuki M, Larson B, Zhang J, Zagorska A, Didonato M, Nagle A, Warmuth M, Balk SP, Peters EC, Gray NS.
Abstract : Irreversible HER/erbB inhibitors selectively inhibit HER-family kinases by targeting a unique cysteine residue located within the ATP-binding pocket. Sequence alignment reveals that this rare cysteine is also present in ten other protein kinases including all five Tec-family members. We demonstrate that the Tec-family kinase Bmx is potently inhibited by irreversible modification at Cys496 by clinical stage EGFR inhibitors such as CI-1033. This cross-reactivity may have significant clinical implications.
Inhibition of EGFR by HTRF assay
|
None
|
5.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Synthesis and stereochemical effects of pyrrolidinyl-acetylenic thieno[3,2-d]pyrimidines as EGFR and ErbB-2 inhibitors.
Year : 2009
Volume : 19
Issue : 1
First Page : 21
Last Page : 26
Authors : Stevens KL, Alligood KJ, Alberti JG, Caferro TR, Chamberlain SD, Dickerson SH, Dickson HD, Emerson HK, Griffin RJ, Hubbard RD, Keith BR, Mullin RJ, Petrov KG, Gerding RM, Reno MJ, Rheault TR, Rusnak DW, Sammond DM, Smith SC, Uehling DE, Waterson AG, Wood ER.
Abstract : A novel class of pyrrolidinyl-acetyleneic thieno[3,2-d]pyrimidines has been identified which potently inhibit the EGFR and ErbB-2 receptor tyrosine kinases. Synthetic modifications of the pyrrolidine carbamate moiety result in a range of effects on enzyme and cellular potency. In addition, the impact of the absolute stereochemical configuration on cellular potency and oral mouse pharmacokinetics is described.
Inhibition of ERBb2 by HTRF assay
|
None
|
80.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Synthesis and stereochemical effects of pyrrolidinyl-acetylenic thieno[3,2-d]pyrimidines as EGFR and ErbB-2 inhibitors.
Year : 2009
Volume : 19
Issue : 1
First Page : 21
Last Page : 26
Authors : Stevens KL, Alligood KJ, Alberti JG, Caferro TR, Chamberlain SD, Dickerson SH, Dickson HD, Emerson HK, Griffin RJ, Hubbard RD, Keith BR, Mullin RJ, Petrov KG, Gerding RM, Reno MJ, Rheault TR, Rusnak DW, Sammond DM, Smith SC, Uehling DE, Waterson AG, Wood ER.
Abstract : A novel class of pyrrolidinyl-acetyleneic thieno[3,2-d]pyrimidines has been identified which potently inhibit the EGFR and ErbB-2 receptor tyrosine kinases. Synthetic modifications of the pyrrolidine carbamate moiety result in a range of effects on enzyme and cellular potency. In addition, the impact of the absolute stereochemical configuration on cellular potency and oral mouse pharmacokinetics is described.
Antiproliferative activity against human HN5 cells overexpressing EGFR after 3 days by methylene blue staining
|
Homo sapiens
|
50.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Synthesis and stereochemical effects of pyrrolidinyl-acetylenic thieno[3,2-d]pyrimidines as EGFR and ErbB-2 inhibitors.
Year : 2009
Volume : 19
Issue : 1
First Page : 21
Last Page : 26
Authors : Stevens KL, Alligood KJ, Alberti JG, Caferro TR, Chamberlain SD, Dickerson SH, Dickson HD, Emerson HK, Griffin RJ, Hubbard RD, Keith BR, Mullin RJ, Petrov KG, Gerding RM, Reno MJ, Rheault TR, Rusnak DW, Sammond DM, Smith SC, Uehling DE, Waterson AG, Wood ER.
Abstract : A novel class of pyrrolidinyl-acetyleneic thieno[3,2-d]pyrimidines has been identified which potently inhibit the EGFR and ErbB-2 receptor tyrosine kinases. Synthetic modifications of the pyrrolidine carbamate moiety result in a range of effects on enzyme and cellular potency. In addition, the impact of the absolute stereochemical configuration on cellular potency and oral mouse pharmacokinetics is described.
Antiproliferative activity against human BT474 cells overexpressing ERBb2 after 3 days by methylene blue staining
|
Homo sapiens
|
10.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Synthesis and stereochemical effects of pyrrolidinyl-acetylenic thieno[3,2-d]pyrimidines as EGFR and ErbB-2 inhibitors.
Year : 2009
Volume : 19
Issue : 1
First Page : 21
Last Page : 26
Authors : Stevens KL, Alligood KJ, Alberti JG, Caferro TR, Chamberlain SD, Dickerson SH, Dickson HD, Emerson HK, Griffin RJ, Hubbard RD, Keith BR, Mullin RJ, Petrov KG, Gerding RM, Reno MJ, Rheault TR, Rusnak DW, Sammond DM, Smith SC, Uehling DE, Waterson AG, Wood ER.
Abstract : A novel class of pyrrolidinyl-acetyleneic thieno[3,2-d]pyrimidines has been identified which potently inhibit the EGFR and ErbB-2 receptor tyrosine kinases. Synthetic modifications of the pyrrolidine carbamate moiety result in a range of effects on enzyme and cellular potency. In addition, the impact of the absolute stereochemical configuration on cellular potency and oral mouse pharmacokinetics is described.
Binding constant for ABL1(H396P) kinase domain
|
Homo sapiens
|
500.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for EGFR kinase domain
|
Homo sapiens
|
0.19
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for EGFR(G719C) kinase domain
|
Homo sapiens
|
0.13
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for RET(M918T) kinase domain
|
Homo sapiens
|
840.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for DDR1 kinase domain
|
Homo sapiens
|
400.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for EGFR(G719S) kinase domain
|
Homo sapiens
|
0.19
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for FLT3(D835Y) kinase domain
|
Homo sapiens
|
730.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for TXK kinase domain
|
Homo sapiens
|
700.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for ABL1(M351T) kinase domain
|
Homo sapiens
|
640.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for ABL1(Q252H) kinase domain
|
Homo sapiens
|
200.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for EGFR(L858R) kinase domain
|
Homo sapiens
|
0.24
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for BLK kinase domain
|
Homo sapiens
|
45.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for EGFR(L747-E749del, A750P) kinase domain
|
Homo sapiens
|
0.17
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for EGFR(L747-S752del, P753S) kinase domain
|
Homo sapiens
|
0.26
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for full-length MKNK1
|
Homo sapiens
|
260.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for JAK3(Kin.Dom.2/JH1 - catalytic) kinase domain
|
Homo sapiens
|
630.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for LCK kinase domain
|
Homo sapiens
|
320.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for TGFBR2 kinase domain
|
Homo sapiens
|
800.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for ABL1(Y253F) kinase domain
|
Homo sapiens
|
730.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for ABL2 kinase domain
|
Homo sapiens
|
870.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for EGFR(E746-A750del) kinase domain
|
Homo sapiens
|
0.26
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for EGFR(S752-I759del) kinase domain
|
Homo sapiens
|
0.19
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for ERBB2 kinase domain
|
Homo sapiens
|
87.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for ERBB4 kinase domain
|
Homo sapiens
|
29.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for LYN kinase domain
|
Homo sapiens
|
810.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for GAK kinase domain
|
Homo sapiens
|
100.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for ABL1(T315I) kinase domain
|
Homo sapiens
|
550.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for EGFR(L747-T751del,Sins) kinase domain
|
Homo sapiens
|
0.26
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for EGFR(L861Q) kinase domain
|
Homo sapiens
|
0.22
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for RIPK2 kinase domain
|
Homo sapiens
|
300.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for EPHA6 kinase domain
|
Homo sapiens
|
270.0
nM
|
|
Journal : Nat. Biotechnol.
Title : A quantitative analysis of kinase inhibitor selectivity.
Year : 2008
Volume : 26
Issue : 1
First Page : 127
Last Page : 132
Authors : Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP.
Abstract : Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets. The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome. We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Binding constant for MEK5 kinase domain
|
None
|
60.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for MKK7 kinase domain
|
None
|
110.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for LRRK2 kinase domain
|
None
|
500.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for EPHA6 kinase domain
|
None
|
270.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for QSK kinase domain
|
None
|
700.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for JAK3(JH1domain-catalytic) kinase domain
|
None
|
630.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for KIT(A829P) kinase domain
|
None
|
700.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for KIT(D816H) kinase domain
|
None
|
600.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for MET(Y1235D) kinase domain
|
None
|
830.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for ERBB2 kinase domain
|
None
|
56.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for ERBB4 kinase domain
|
None
|
6.5
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for MKNK1 kinase domain
|
None
|
260.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for IRAK1 kinase domain
|
None
|
450.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for BLK kinase domain
|
None
|
45.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for CSNK1E kinase domain
|
None
|
420.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for DDR1 kinase domain
|
None
|
400.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for ERBB3 kinase domain
|
None
|
210.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for LYN kinase domain
|
None
|
810.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for TGFBR2 kinase domain
|
None
|
800.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for TXK kinase domain
|
None
|
700.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for RIPK2 kinase domain
|
None
|
300.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for FLT3(D835Y) kinase domain
|
None
|
730.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for FLT3(R834Q) kinase domain
|
None
|
490.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for EPHB6 kinase domain
|
None
|
640.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for MAP4K2 kinase domain
|
None
|
330.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for ABL1(E255K)-phosphorylated kinase domain
|
None
|
30.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for ABL1(F317L)-phosphorylated kinase domain
|
None
|
91.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for ABL1(H396P)-non phosphorylated kinase domain
|
None
|
46.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for ABL1(H396P)-phosphorylated kinase domain
|
None
|
57.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for ABL1(M351T)-phosphorylated kinase domain
|
None
|
38.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for ABL1(Q252H)-non phosphorylated kinase domain
|
None
|
91.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for ABL1(Q252H)-phosphorylated kinase domain
|
None
|
22.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for ABL1(T315I)-non phosphorylated kinase domain
|
None
|
690.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for ABL1(T315I)-phosphorylated kinase domain
|
None
|
69.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for ABL1(Y253F)-phosphorylated kinase domain
|
None
|
42.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for ABL1-non phosphorylated kinase domain
|
None
|
210.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for ABL1-phosphorylated kinase domain
|
None
|
30.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for ABL2 kinase domain
|
None
|
870.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for EGFR kinase domain
|
None
|
0.19
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for EGFR(E746-A750del) kinase domain
|
None
|
0.26
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for EGFR(G719C) kinase domain
|
None
|
0.13
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for EGFR(G719S) kinase domain
|
None
|
0.19
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for EGFR(L747-E749del, A750P) kinase domain
|
None
|
0.17
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for EGFR(L747-S752del, P753S) kinase domain
|
None
|
0.26
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for EGFR(L747-T751del,Sins) kinase domain
|
None
|
0.26
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for EGFR(L858R) kinase domain
|
None
|
0.24
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for EGFR(L858R,T790M) kinase domain
|
None
|
0.28
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for EGFR(L861Q) kinase domain
|
None
|
0.22
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for EGFR(S752-I759del) kinase domain
|
None
|
0.19
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for EGFR(T790M) kinase domain
|
None
|
0.1
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for GAK kinase domain
|
None
|
100.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for LCK kinase domain
|
None
|
320.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for RET(M918T) kinase domain
|
None
|
840.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Binding constant for YSK4 kinase domain
|
None
|
700.0
nM
|
|
Journal : Nat. Biotechnol.
Title : Comprehensive analysis of kinase inhibitor selectivity.
Year : 2011
Volume : 29
Issue : 11
First Page : 1046
Last Page : 1051
Authors : Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, Hocker M, Treiber DK, Zarrinkar PP.
Abstract : We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Antiproliferative activity against human HCC827 cells harboring EGFR del E746-A750 mutant after 72 hrs by MTS assay
|
Homo sapiens
|
1.0
nM
|
|
Journal : J. Med. Chem.
Title : Design, synthesis, and biological evaluation of novel conformationally constrained inhibitors targeting epidermal growth factor receptor threonine⁷⁹⁰ → methionine⁷⁹⁰ mutant.
Year : 2012
Volume : 55
Issue : 6
First Page : 2711
Last Page : 2723
Authors : Chang S, Zhang L, Xu S, Luo J, Lu X, Zhang Z, Xu T, Liu Y, Tu Z, Xu Y, Ren X, Geng M, Ding J, Pei D, Ding K.
Abstract : The EGFR(T790M) mutant contributes approximately 50% to clinically acquired resistance against gefitinib or erlotinib. However, almost all the single agent clinical trials of the second generation irreversible EGFR inhibitors appear inadequate to overcome the EGFR(T790M)-related resistance. We have designed and synthesized a series of 2-oxo-3,4-dihydropyrimido[4,5-d]pyrimidinyl derivatives as novel EGFR inhibitors. The most potent compounds, 2q and 2s, inhibited the enzymatic activities of wild-type and mutated EGFRs, with IC(50) values in subnanomolar ranges, including the T790M mutants. The kinase inhibitory efficiencies of the compounds were further validated by Western blot analysis of the activation of EGFR and downstream signaling in cancer cells harboring different mutants of EGFR. The compounds also strongly inhibited the proliferation of H1975 non small cell lung cancer cells bearing EGFR(L858R/T790M), while being significantly less toxic to normal cells. Moreover, 2s displayed promising anticancer efficacy in a human NSCLC (H1975) xenograft nude mouse model.
Antiproliferative activity against human NCI-H1975 cells harboring EGFR L858R/T790M mutant after 72 hrs by MTS assay
|
Homo sapiens
|
64.0
nM
|
|
Journal : J. Med. Chem.
Title : Design, synthesis, and biological evaluation of novel conformationally constrained inhibitors targeting epidermal growth factor receptor threonine⁷⁹⁰ → methionine⁷⁹⁰ mutant.
Year : 2012
Volume : 55
Issue : 6
First Page : 2711
Last Page : 2723
Authors : Chang S, Zhang L, Xu S, Luo J, Lu X, Zhang Z, Xu T, Liu Y, Tu Z, Xu Y, Ren X, Geng M, Ding J, Pei D, Ding K.
Abstract : The EGFR(T790M) mutant contributes approximately 50% to clinically acquired resistance against gefitinib or erlotinib. However, almost all the single agent clinical trials of the second generation irreversible EGFR inhibitors appear inadequate to overcome the EGFR(T790M)-related resistance. We have designed and synthesized a series of 2-oxo-3,4-dihydropyrimido[4,5-d]pyrimidinyl derivatives as novel EGFR inhibitors. The most potent compounds, 2q and 2s, inhibited the enzymatic activities of wild-type and mutated EGFRs, with IC(50) values in subnanomolar ranges, including the T790M mutants. The kinase inhibitory efficiencies of the compounds were further validated by Western blot analysis of the activation of EGFR and downstream signaling in cancer cells harboring different mutants of EGFR. The compounds also strongly inhibited the proliferation of H1975 non small cell lung cancer cells bearing EGFR(L858R/T790M), while being significantly less toxic to normal cells. Moreover, 2s displayed promising anticancer efficacy in a human NSCLC (H1975) xenograft nude mouse model.
Antiproliferative activity against human A431 cells overexpressing EGFR after 72 hrs by MTS assay
|
Homo sapiens
|
150.0
nM
|
|
Journal : J. Med. Chem.
Title : Design, synthesis, and biological evaluation of novel conformationally constrained inhibitors targeting epidermal growth factor receptor threonine⁷⁹⁰ → methionine⁷⁹⁰ mutant.
Year : 2012
Volume : 55
Issue : 6
First Page : 2711
Last Page : 2723
Authors : Chang S, Zhang L, Xu S, Luo J, Lu X, Zhang Z, Xu T, Liu Y, Tu Z, Xu Y, Ren X, Geng M, Ding J, Pei D, Ding K.
Abstract : The EGFR(T790M) mutant contributes approximately 50% to clinically acquired resistance against gefitinib or erlotinib. However, almost all the single agent clinical trials of the second generation irreversible EGFR inhibitors appear inadequate to overcome the EGFR(T790M)-related resistance. We have designed and synthesized a series of 2-oxo-3,4-dihydropyrimido[4,5-d]pyrimidinyl derivatives as novel EGFR inhibitors. The most potent compounds, 2q and 2s, inhibited the enzymatic activities of wild-type and mutated EGFRs, with IC(50) values in subnanomolar ranges, including the T790M mutants. The kinase inhibitory efficiencies of the compounds were further validated by Western blot analysis of the activation of EGFR and downstream signaling in cancer cells harboring different mutants of EGFR. The compounds also strongly inhibited the proliferation of H1975 non small cell lung cancer cells bearing EGFR(L858R/T790M), while being significantly less toxic to normal cells. Moreover, 2s displayed promising anticancer efficacy in a human NSCLC (H1975) xenograft nude mouse model.
Inhibition of EGFR
|
None
|
1.5
nM
|
|
Journal : J. Med. Chem.
Title : Irreversible protein kinase inhibitors: balancing the benefits and risks.
Year : 2012
Volume : 55
Issue : 14
First Page : 6243
Last Page : 6262
Authors : Barf T, Kaptein A.
Inhibition of ErbB2
|
None
|
5.0
nM
|
|
Journal : J. Med. Chem.
Title : Irreversible protein kinase inhibitors: balancing the benefits and risks.
Year : 2012
Volume : 55
Issue : 14
First Page : 6243
Last Page : 6262
Authors : Barf T, Kaptein A.
Inhibition of ErbB4
|
None
|
10.0
nM
|
|
Journal : J. Med. Chem.
Title : Irreversible protein kinase inhibitors: balancing the benefits and risks.
Year : 2012
Volume : 55
Issue : 14
First Page : 6243
Last Page : 6262
Authors : Barf T, Kaptein A.
Inhibition of epidermal growth factor receptor kinase (unknown origin) using [33P]-ATP after 20 to 30 mins by radiometric assay
|
Homo sapiens
|
0.8
nM
|
|
Journal : Eur. J. Med. Chem.
Title : Molecular design and synthesis of certain new quinoline derivatives having potential anticancer activity.
Year : 2015
Volume : 102
First Page : 115
Last Page : 131
Authors : Ibrahim DA, Abou El Ella DA, El-Motwally AM, Aly RM.
Abstract : EGFR, which plays a vital role as a regulator of cell growth, is one of the intensely studied TK targets of anticancer inhibitors. The most two common anticancer inhibitors are anilinoquiazolines and anilinoquinolines that inhibit EGFR kinase intracellularly. The present investigation dealt with design (pharmacophore, docking and binding energy) and synthesis of a new series of 4-anilinoquinoline-3-carboxamide derivatives as potential anticancer agents targeting EGFR. All the newly synthesized compounds were screened for their anticancer activity against MCF-7 and compounds 4f, 7a and 7b showed significant activity with IC50 values 13.96 μM, 2.16 μM and 3.46 μM, respectively. Most of the synthesized compounds were subjected to enzyme assay (EGFR TK) for measuring their inhibitory activity with the determination of IC50 values and the preliminary results revealed that compound 7b, which had potent inhibitory activity in tumor growth and had potent activity on the EGFR TK enzyme with 67% inhibition compared to ATP would be a potential anticancer agent.
Reversible binding affinity to human EGFR L858R/ T790M double mutant expressed in baculovirus by fluorometric analysis
|
Homo sapiens
|
0.11
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of 1-{(3R,4R)-3-[({5-Chloro-2-[(1-methyl-1H-pyrazol-4-yl)amino]-7H-pyrrolo[2,3-d]pyrimidin-4-yl}oxy)methyl]-4-methoxypyrrolidin-1-yl}prop-2-en-1-one (PF-06459988), a Potent, WT Sparing, Irreversible Inhibitor of T790M-Containing EGFR Mutants.
Year : 2016
Volume : 59
Issue : 5
First Page : 2005
Last Page : 2024
Authors : Cheng H, Nair SK, Murray BW, Almaden C, Bailey S, Baxi S, Behenna D, Cho-Schultz S, Dalvie D, Dinh DM, Edwards MP, Feng JL, Ferre RA, Gajiwala KS, Hemkens MD, Jackson-Fisher A, Jalaie M, Johnson TO, Kania RS, Kephart S, Lafontaine J, Lunney B, Liu KK, Liu Z, Matthews J, Nagata A, Niessen S, Ornelas MA, Orr ST, Pairish M, Planken S, Ren S, Richter D, Ryan K, Sach N, Shen H, Smeal T, Solowiej J, Sutton S, Tran K, Tseng E, Vernier W, Walls M, Wang S, Weinrich SL, Xin S, Xu H, Yin MJ, Zientek M, Zhou R, Kath JC.
Abstract : First generation EGFR TKIs (gefitinib, erlotinib) provide significant clinical benefit for NSCLC cancer patients with oncogenic EGFR mutations. Ultimately, these patients' disease progresses, often driven by a second-site mutation in the EGFR kinase domain (T790M). Another liability of the first generation drugs is severe adverse events driven by inhibition of WT EGFR. As such, our goal was to develop a highly potent irreversible inhibitor with the largest selectivity ratio between the drug-resistant double mutants (L858R/T790M, Del/T790M) and WT EGFR. A unique approach to develop covalent inhibitors, optimization of reversible binding affinity, served as a cornerstone of this effort. PF-06459988 was discovered as a novel, third generation irreversible inhibitor, which demonstrates (i) high potency and specificity to the T790M-containing double mutant EGFRs, (ii) minimal intrinsic chemical reactivity of the electrophilic warhead, (iii) greatly reduced proteome reactivity relative to earlier irreversible EGFR inhibitors, and (iv) minimal activity against WT EGFR.
Inhibition of EGF-stimulated wild type EGFR autophosphorylation expressed in human A549 cells by sandwich ELISA
|
Homo sapiens
|
6.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of 1-{(3R,4R)-3-[({5-Chloro-2-[(1-methyl-1H-pyrazol-4-yl)amino]-7H-pyrrolo[2,3-d]pyrimidin-4-yl}oxy)methyl]-4-methoxypyrrolidin-1-yl}prop-2-en-1-one (PF-06459988), a Potent, WT Sparing, Irreversible Inhibitor of T790M-Containing EGFR Mutants.
Year : 2016
Volume : 59
Issue : 5
First Page : 2005
Last Page : 2024
Authors : Cheng H, Nair SK, Murray BW, Almaden C, Bailey S, Baxi S, Behenna D, Cho-Schultz S, Dalvie D, Dinh DM, Edwards MP, Feng JL, Ferre RA, Gajiwala KS, Hemkens MD, Jackson-Fisher A, Jalaie M, Johnson TO, Kania RS, Kephart S, Lafontaine J, Lunney B, Liu KK, Liu Z, Matthews J, Nagata A, Niessen S, Ornelas MA, Orr ST, Pairish M, Planken S, Ren S, Richter D, Ryan K, Sach N, Shen H, Smeal T, Solowiej J, Sutton S, Tran K, Tseng E, Vernier W, Walls M, Wang S, Weinrich SL, Xin S, Xu H, Yin MJ, Zientek M, Zhou R, Kath JC.
Abstract : First generation EGFR TKIs (gefitinib, erlotinib) provide significant clinical benefit for NSCLC cancer patients with oncogenic EGFR mutations. Ultimately, these patients' disease progresses, often driven by a second-site mutation in the EGFR kinase domain (T790M). Another liability of the first generation drugs is severe adverse events driven by inhibition of WT EGFR. As such, our goal was to develop a highly potent irreversible inhibitor with the largest selectivity ratio between the drug-resistant double mutants (L858R/T790M, Del/T790M) and WT EGFR. A unique approach to develop covalent inhibitors, optimization of reversible binding affinity, served as a cornerstone of this effort. PF-06459988 was discovered as a novel, third generation irreversible inhibitor, which demonstrates (i) high potency and specificity to the T790M-containing double mutant EGFRs, (ii) minimal intrinsic chemical reactivity of the electrophilic warhead, (iii) greatly reduced proteome reactivity relative to earlier irreversible EGFR inhibitors, and (iv) minimal activity against WT EGFR.
Inhibition of EGFR L858R/T790M double mutant autophosphorylation in human NCI-H1975 cells after 2 hrs by sandwich ELISA
|
Homo sapiens
|
3.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of 1-{(3R,4R)-3-[({5-Chloro-2-[(1-methyl-1H-pyrazol-4-yl)amino]-7H-pyrrolo[2,3-d]pyrimidin-4-yl}oxy)methyl]-4-methoxypyrrolidin-1-yl}prop-2-en-1-one (PF-06459988), a Potent, WT Sparing, Irreversible Inhibitor of T790M-Containing EGFR Mutants.
Year : 2016
Volume : 59
Issue : 5
First Page : 2005
Last Page : 2024
Authors : Cheng H, Nair SK, Murray BW, Almaden C, Bailey S, Baxi S, Behenna D, Cho-Schultz S, Dalvie D, Dinh DM, Edwards MP, Feng JL, Ferre RA, Gajiwala KS, Hemkens MD, Jackson-Fisher A, Jalaie M, Johnson TO, Kania RS, Kephart S, Lafontaine J, Lunney B, Liu KK, Liu Z, Matthews J, Nagata A, Niessen S, Ornelas MA, Orr ST, Pairish M, Planken S, Ren S, Richter D, Ryan K, Sach N, Shen H, Smeal T, Solowiej J, Sutton S, Tran K, Tseng E, Vernier W, Walls M, Wang S, Weinrich SL, Xin S, Xu H, Yin MJ, Zientek M, Zhou R, Kath JC.
Abstract : First generation EGFR TKIs (gefitinib, erlotinib) provide significant clinical benefit for NSCLC cancer patients with oncogenic EGFR mutations. Ultimately, these patients' disease progresses, often driven by a second-site mutation in the EGFR kinase domain (T790M). Another liability of the first generation drugs is severe adverse events driven by inhibition of WT EGFR. As such, our goal was to develop a highly potent irreversible inhibitor with the largest selectivity ratio between the drug-resistant double mutants (L858R/T790M, Del/T790M) and WT EGFR. A unique approach to develop covalent inhibitors, optimization of reversible binding affinity, served as a cornerstone of this effort. PF-06459988 was discovered as a novel, third generation irreversible inhibitor, which demonstrates (i) high potency and specificity to the T790M-containing double mutant EGFRs, (ii) minimal intrinsic chemical reactivity of the electrophilic warhead, (iii) greatly reduced proteome reactivity relative to earlier irreversible EGFR inhibitors, and (iv) minimal activity against WT EGFR.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
687.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
504.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
8.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
679.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Inhibition of EGFR (unknown origin)
|
Homo sapiens
|
7.4
nM
|
|
Journal : Eur J Med Chem
Title : Design, synthesis, antiproliferative activity and docking studies of quinazoline derivatives bearing 2,3-dihydro-indole or 1,2,3,4-tetrahydroquinoline as potential EGFR inhibitors.
Year : 2018
Volume : 154
First Page : 29
Last Page : 43
Authors : OuYang Y, Zou W, Peng L, Yang Z, Tang Q, Chen M, Jia S, Zhang H, Lan Z, Zheng P, Zhu W.
Abstract : Eight series of quinazoline derivatives bearing 2,3-dihydro-indole or 1,2,3,4-tetrahydroquinoline were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, MCF-7 and PC-3). Most of the forty nine target compounds showed excellent antiproliferative activity against one or several cancer cell lines. The compound 13a showed the best activity against A549, MCF-7 and PC-3 cancer cell lines, with the IC50 values of 1.09 ± 0.04 μM, 1.34 ± 0.13 μM and 1.23 ± 0.09 μM, respectively. Eight selected compounds were further selected to evaluated for the inhibitory activity against EGFR kinase. Three of them showed equal activity against EGFR kinase to positive control afatinib. AnnexinV-FITC, propidium iodide (PI) double staining and acridine orange single staining results indicated that the compound 13a could induce apoptosis of human lung cancer A549 cells.
Antiproliferative activity against human NCI-H1975 cells expressing EGFR T790M/L858R mutant incubated for 72 hrs by MTS assay
|
Homo sapiens
|
101.0
nM
|
|
Journal : Eur J Med Chem
Title : How to train your inhibitor: Design strategies to overcome resistance to Epidermal Growth Factor Receptor inhibitors.
Year : 2017
Volume : 142
First Page : 131
Last Page : 151
Authors : Milik SN, Lasheen DS, Serya RAT, Abouzid KAM.
Abstract : Epidermal Growth Factor Receptor (EGFR) stands out as a key player in the development of many cancers. Its dysregulation is associated with a vast number of tumors such as non-small-cell lung cancer, colon cancer, head-and-neck cancer, breast and ovarian cancer. Being implicated in the development of a number of the most lethal cancers worldwide, EGFR has long been considered as a focal target for cancer therapies, ever since the FDA approval of "Gefitinib" in 2003 and up to the last FDA approved small molecule EGFR kinase inhibitor "Osimertinib" in 2015. Studies are still going on to find more efficient EGFR inhibitors due to the continuous emergence of resistance to the current inhibitors. Cancerous cells resist EGFR tyrosine kinase inhibitors (TKIs) through various mechanisms, the most commonly reported ones are the T790M mutation and HER2 amplification. Therefore, tackling EGFR TKIs-resistant tumors through a multi-targeting approach comprising a dual EGFR/HER2 inhibitor that is also capable of inhibiting the mutant T790M EGFR is anticipated to overcome drug resistance. In this review, we will survey the structural aspects of EGFR family and the structure-activity relationship of representative dual EGFR/HER2 inhibitors. To follow, we will discuss the structural aspects of the mutation-driven resistance and various design strategies to overcome it. Finally, we will review the SAR of exemplary irreversible dual EGFR/HER2 inhibitors that can overcome the mutation-driven resistance.
Inhibition of GST-tagged human EGFR catalytic domain expressed in insect cells
|
Homo sapiens
|
0.3
nM
|
|
Journal : Eur J Med Chem
Title : How to train your inhibitor: Design strategies to overcome resistance to Epidermal Growth Factor Receptor inhibitors.
Year : 2017
Volume : 142
First Page : 131
Last Page : 151
Authors : Milik SN, Lasheen DS, Serya RAT, Abouzid KAM.
Abstract : Epidermal Growth Factor Receptor (EGFR) stands out as a key player in the development of many cancers. Its dysregulation is associated with a vast number of tumors such as non-small-cell lung cancer, colon cancer, head-and-neck cancer, breast and ovarian cancer. Being implicated in the development of a number of the most lethal cancers worldwide, EGFR has long been considered as a focal target for cancer therapies, ever since the FDA approval of "Gefitinib" in 2003 and up to the last FDA approved small molecule EGFR kinase inhibitor "Osimertinib" in 2015. Studies are still going on to find more efficient EGFR inhibitors due to the continuous emergence of resistance to the current inhibitors. Cancerous cells resist EGFR tyrosine kinase inhibitors (TKIs) through various mechanisms, the most commonly reported ones are the T790M mutation and HER2 amplification. Therefore, tackling EGFR TKIs-resistant tumors through a multi-targeting approach comprising a dual EGFR/HER2 inhibitor that is also capable of inhibiting the mutant T790M EGFR is anticipated to overcome drug resistance. In this review, we will survey the structural aspects of EGFR family and the structure-activity relationship of representative dual EGFR/HER2 inhibitors. To follow, we will discuss the structural aspects of the mutation-driven resistance and various design strategies to overcome it. Finally, we will review the SAR of exemplary irreversible dual EGFR/HER2 inhibitors that can overcome the mutation-driven resistance.
Inhibition of GST-tagged human HER2 catalytic domain expressed in insect cells
|
Homo sapiens
|
30.0
nM
|
|
Journal : Eur J Med Chem
Title : How to train your inhibitor: Design strategies to overcome resistance to Epidermal Growth Factor Receptor inhibitors.
Year : 2017
Volume : 142
First Page : 131
Last Page : 151
Authors : Milik SN, Lasheen DS, Serya RAT, Abouzid KAM.
Abstract : Epidermal Growth Factor Receptor (EGFR) stands out as a key player in the development of many cancers. Its dysregulation is associated with a vast number of tumors such as non-small-cell lung cancer, colon cancer, head-and-neck cancer, breast and ovarian cancer. Being implicated in the development of a number of the most lethal cancers worldwide, EGFR has long been considered as a focal target for cancer therapies, ever since the FDA approval of "Gefitinib" in 2003 and up to the last FDA approved small molecule EGFR kinase inhibitor "Osimertinib" in 2015. Studies are still going on to find more efficient EGFR inhibitors due to the continuous emergence of resistance to the current inhibitors. Cancerous cells resist EGFR tyrosine kinase inhibitors (TKIs) through various mechanisms, the most commonly reported ones are the T790M mutation and HER2 amplification. Therefore, tackling EGFR TKIs-resistant tumors through a multi-targeting approach comprising a dual EGFR/HER2 inhibitor that is also capable of inhibiting the mutant T790M EGFR is anticipated to overcome drug resistance. In this review, we will survey the structural aspects of EGFR family and the structure-activity relationship of representative dual EGFR/HER2 inhibitors. To follow, we will discuss the structural aspects of the mutation-driven resistance and various design strategies to overcome it. Finally, we will review the SAR of exemplary irreversible dual EGFR/HER2 inhibitors that can overcome the mutation-driven resistance.
Inhibition of human EGFR T790M/L858R mutant expressed in mouse Ba/F3 cells
|
Homo sapiens
|
26.0
nM
|
|
Journal : Eur J Med Chem
Title : How to train your inhibitor: Design strategies to overcome resistance to Epidermal Growth Factor Receptor inhibitors.
Year : 2017
Volume : 142
First Page : 131
Last Page : 151
Authors : Milik SN, Lasheen DS, Serya RAT, Abouzid KAM.
Abstract : Epidermal Growth Factor Receptor (EGFR) stands out as a key player in the development of many cancers. Its dysregulation is associated with a vast number of tumors such as non-small-cell lung cancer, colon cancer, head-and-neck cancer, breast and ovarian cancer. Being implicated in the development of a number of the most lethal cancers worldwide, EGFR has long been considered as a focal target for cancer therapies, ever since the FDA approval of "Gefitinib" in 2003 and up to the last FDA approved small molecule EGFR kinase inhibitor "Osimertinib" in 2015. Studies are still going on to find more efficient EGFR inhibitors due to the continuous emergence of resistance to the current inhibitors. Cancerous cells resist EGFR tyrosine kinase inhibitors (TKIs) through various mechanisms, the most commonly reported ones are the T790M mutation and HER2 amplification. Therefore, tackling EGFR TKIs-resistant tumors through a multi-targeting approach comprising a dual EGFR/HER2 inhibitor that is also capable of inhibiting the mutant T790M EGFR is anticipated to overcome drug resistance. In this review, we will survey the structural aspects of EGFR family and the structure-activity relationship of representative dual EGFR/HER2 inhibitors. To follow, we will discuss the structural aspects of the mutation-driven resistance and various design strategies to overcome it. Finally, we will review the SAR of exemplary irreversible dual EGFR/HER2 inhibitors that can overcome the mutation-driven resistance.
Inhibition of human EGFR L858R mutant expressed in mouse Ba/F3 cells
|
Homo sapiens
|
0.4
nM
|
|
Journal : Eur J Med Chem
Title : How to train your inhibitor: Design strategies to overcome resistance to Epidermal Growth Factor Receptor inhibitors.
Year : 2017
Volume : 142
First Page : 131
Last Page : 151
Authors : Milik SN, Lasheen DS, Serya RAT, Abouzid KAM.
Abstract : Epidermal Growth Factor Receptor (EGFR) stands out as a key player in the development of many cancers. Its dysregulation is associated with a vast number of tumors such as non-small-cell lung cancer, colon cancer, head-and-neck cancer, breast and ovarian cancer. Being implicated in the development of a number of the most lethal cancers worldwide, EGFR has long been considered as a focal target for cancer therapies, ever since the FDA approval of "Gefitinib" in 2003 and up to the last FDA approved small molecule EGFR kinase inhibitor "Osimertinib" in 2015. Studies are still going on to find more efficient EGFR inhibitors due to the continuous emergence of resistance to the current inhibitors. Cancerous cells resist EGFR tyrosine kinase inhibitors (TKIs) through various mechanisms, the most commonly reported ones are the T790M mutation and HER2 amplification. Therefore, tackling EGFR TKIs-resistant tumors through a multi-targeting approach comprising a dual EGFR/HER2 inhibitor that is also capable of inhibiting the mutant T790M EGFR is anticipated to overcome drug resistance. In this review, we will survey the structural aspects of EGFR family and the structure-activity relationship of representative dual EGFR/HER2 inhibitors. To follow, we will discuss the structural aspects of the mutation-driven resistance and various design strategies to overcome it. Finally, we will review the SAR of exemplary irreversible dual EGFR/HER2 inhibitors that can overcome the mutation-driven resistance.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of Caco-2 cells at 10 uM after 48 hours by high content imaging
|
Homo sapiens
|
3.21
%
|
|
Title : Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection
Year : 2020
Authors : Bernhard Ellinger, Denisa Bojkova, Andrea Zaliani, Jindrich Cinatl, Carsten Claussen, Sandra Westhaus, Jeanette Reinshagen, Maria Kuzikov, Markus Wolf, Gerd Geisslinger, Philip Gribbon, Sandra Ciesek
Abstract : To identify possible candidates for progression towards clinical studies against SARS-CoV-2, we screened a well-defined collection of 5632 compounds including 3488 compounds which have undergone clinical investigations (marketed drugs, phases 1 -3, and withdrawn) across 600 indications. Compounds were screened for their inhibition of viral induced cytotoxicity using the human epithelial colorectal adenocarcinoma cell line Caco-2 and a SARS-CoV-2 isolate. The primary screen of 5632 compounds gave 271 hits. A total of 64 compounds with IC50 <20 µM were identified, including 19 compounds with IC50 < 1 µM. Of this confirmed hit population, 90% have not yet been previously reported as active against SARS-CoV-2 in-vitro cell assays. Some 37 of the actives are launched drugs, 19 are in phases 1-3 and 10 pre-clinical. Several inhibitors were associated with modulation of host pathways including kinase signaling P53 activation, ubiquitin pathways and PDE activity modulation, with long chain acyl transferases were effective viral inhibitors.
Inhibition of human A431 cell-derived EGFR using polyglutamic acid/tyrosine as substrate incubated for 10 mins followed by [32P]ATP addition and measured after 10 mins by beta counting method
|
Homo sapiens
|
15.0
nM
|
|
Journal : Bioorg Med Chem
Title : The association between anti-tumor potency and structure-activity of protein-kinases inhibitors based on quinazoline molecular skeleton.
Year : 2019
Volume : 27
Issue : 3
First Page : 568
Last Page : 577
Authors : Li Y, Xiao J, Zhang Q, Yu W, Liu M, Guo Y, He J, Liu Y.
Abstract : Quinazoline was originally utilized as an anti-tumor treatment, and its various derivatives can be directly extracted from plants. In recent years, protein kinases (PK) have been well recognized in the development of tumor drugs. Functionally, PK serves a vital role in the apoptosis, proliferation, differentiation, migration and cell cycle of tumor cells. Due to its good physicochemical properties, quinazoline skeleton, a superior type of PK inhibitor, has been extensively used in anti-tumor drug design. An increasing number of studies on quinazoline synthesis have been reported and used by different groups to effectively develop novel derivatives. Thus, several studies have been approved for the use of quinazoline derivatives as inhibitors of other kinases, including Src and histone deacetylase. The aim of the present review was to summarize the mechanism of quinazoline compounds as PK inhibitors, their biological structure-activity relationship such as the substituted quinazoline compounds with different functional groups in the apoptotic process, and their effect on the proliferation of tumor cells. The development of novel agents based on the antitumor functions of quinazoline molecular compounds may improve the clinical outcomes of the affected population, particularly in patients with cancer.
Inhibition of EGFR (unknown origin)
|
Homo sapiens
|
2.0
nM
|
|
Journal : Eur J Med Chem
Title : Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry.
Year : 2019
Volume : 170
First Page : 55
Last Page : 72
Authors : Das D, Hong J.
Abstract : The 4-aminoquinazoline core is an interesting pharmacophore and its applications in medicinal chemistry are wide spread. The core has been used for making many kinase inhibitors in past few years. Many researcher demonstrated 4-aminoquinazoline derivatives as specific kinase inhibitors, including tyrosine kinase and serine/theronine kinases. A number of anticancer drugs with 4-aminoquinazoline core are in the market, e.g. gefitinib, erlotinib, afatinib, lapatinib, decomitinib etc. 4-aminoquinazoline derivatives are applied for target specific treatment of lung, breast, colon, prostate cancers. In this review, we discussed the current development of 4-aminoquinazoline derivatives as kinase inhibitors and their uses as anticancer agents in recent years.
Inhibition of EGFR (unknown origin) assessed as reduction of phosphorylation of polyglutamic acid/tyrosine incubated for 10 mins by beta scintillation counter
|
Homo sapiens
|
0.8
nM
|
|
Journal : Eur J Med Chem
Title : Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry.
Year : 2019
Volume : 170
First Page : 55
Last Page : 72
Authors : Das D, Hong J.
Abstract : The 4-aminoquinazoline core is an interesting pharmacophore and its applications in medicinal chemistry are wide spread. The core has been used for making many kinase inhibitors in past few years. Many researcher demonstrated 4-aminoquinazoline derivatives as specific kinase inhibitors, including tyrosine kinase and serine/theronine kinases. A number of anticancer drugs with 4-aminoquinazoline core are in the market, e.g. gefitinib, erlotinib, afatinib, lapatinib, decomitinib etc. 4-aminoquinazoline derivatives are applied for target specific treatment of lung, breast, colon, prostate cancers. In this review, we discussed the current development of 4-aminoquinazoline derivatives as kinase inhibitors and their uses as anticancer agents in recent years.
Inhibition of HER2 (unknown origin) assessed as reduction of phosphorylation of polyglutamic acid/tyrosine incubated for 10 mins by beta scintillation counter
|
Homo sapiens
|
19.0
nM
|
|
Journal : Eur J Med Chem
Title : Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry.
Year : 2019
Volume : 170
First Page : 55
Last Page : 72
Authors : Das D, Hong J.
Abstract : The 4-aminoquinazoline core is an interesting pharmacophore and its applications in medicinal chemistry are wide spread. The core has been used for making many kinase inhibitors in past few years. Many researcher demonstrated 4-aminoquinazoline derivatives as specific kinase inhibitors, including tyrosine kinase and serine/theronine kinases. A number of anticancer drugs with 4-aminoquinazoline core are in the market, e.g. gefitinib, erlotinib, afatinib, lapatinib, decomitinib etc. 4-aminoquinazoline derivatives are applied for target specific treatment of lung, breast, colon, prostate cancers. In this review, we discussed the current development of 4-aminoquinazoline derivatives as kinase inhibitors and their uses as anticancer agents in recent years.
Inhibition of probe binding to EGFR L858R mutant (unknown origin) using rabbit reticulate lysate system after 1 hr by luminescence assay
|
Homo sapiens
|
2.7
nM
|
|
Journal : Bioorg Med Chem Lett
Title : Lead generation of 1,2-dithiolanes as exon 19 and exon 21 mutant EGFR tyrosine kinase inhibitors.
Year : 2019
Volume : 29
Issue : 12
First Page : 1435
Last Page : 1439
Authors : Mansour TS, Potluri V, Pallepati RR, Basetti V, Keesara M, Moghudula AG, Maiti P.
Antiproliferative activity against human UCH1 cells measured after 72 hrs by alamar blue assay
|
Homo sapiens
|
80.0
nM
|
|
Journal : J Med Chem
Title : Design of a Cyclin G Associated Kinase (GAK)/Epidermal Growth Factor Receptor (EGFR) Inhibitor Set to Interrogate the Relationship of EGFR and GAK in Chordoma.
Year : 2019
Volume : 62
Issue : 9
First Page : 4772
Last Page : 4778
Authors : Asquith CRM, Naegeli KM, East MP, Laitinen T, Havener TM, Wells CI, Johnson GL, Drewry DH, Zuercher WJ, Morris DC.
Abstract : We describe the design of a set of inhibitors to investigate the relationship between cyclin G associated kinase (GAK) and epidermal growth factor receptor (EGFR) in chordoma bone cancers. These compounds were characterized both in vitro and using in cell target engagement assays. The most potent chordoma inhibitors were further characterized in a kinome-wide screen demonstrating narrow spectrum profiles. While we observed a direct correlation between EGFR and antiproliferative effects on chordoma, GAK inhibition appeared to have only a limited effect.
Binding affinity to wild-type human partial length EGFR (R669 to V1011 residues) expressed in bacterial expression system by Kinomescan method
|
Homo sapiens
|
0.19
nM
|
|
Journal : J Med Chem
Title : Design of a Cyclin G Associated Kinase (GAK)/Epidermal Growth Factor Receptor (EGFR) Inhibitor Set to Interrogate the Relationship of EGFR and GAK in Chordoma.
Year : 2019
Volume : 62
Issue : 9
First Page : 4772
Last Page : 4778
Authors : Asquith CRM, Naegeli KM, East MP, Laitinen T, Havener TM, Wells CI, Johnson GL, Drewry DH, Zuercher WJ, Morris DC.
Abstract : We describe the design of a set of inhibitors to investigate the relationship between cyclin G associated kinase (GAK) and epidermal growth factor receptor (EGFR) in chordoma bone cancers. These compounds were characterized both in vitro and using in cell target engagement assays. The most potent chordoma inhibitors were further characterized in a kinome-wide screen demonstrating narrow spectrum profiles. While we observed a direct correlation between EGFR and antiproliferative effects on chordoma, GAK inhibition appeared to have only a limited effect.
Binding affinity to wild-type human partial length GAK (G13 to Y338 residues) expressed in bacterial expression system by Kinomescan method
|
Homo sapiens
|
100.0
nM
|
|
Journal : J Med Chem
Title : Design of a Cyclin G Associated Kinase (GAK)/Epidermal Growth Factor Receptor (EGFR) Inhibitor Set to Interrogate the Relationship of EGFR and GAK in Chordoma.
Year : 2019
Volume : 62
Issue : 9
First Page : 4772
Last Page : 4778
Authors : Asquith CRM, Naegeli KM, East MP, Laitinen T, Havener TM, Wells CI, Johnson GL, Drewry DH, Zuercher WJ, Morris DC.
Abstract : We describe the design of a set of inhibitors to investigate the relationship between cyclin G associated kinase (GAK) and epidermal growth factor receptor (EGFR) in chordoma bone cancers. These compounds were characterized both in vitro and using in cell target engagement assays. The most potent chordoma inhibitors were further characterized in a kinome-wide screen demonstrating narrow spectrum profiles. While we observed a direct correlation between EGFR and antiproliferative effects on chordoma, GAK inhibition appeared to have only a limited effect.
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
19.67
%
|
|
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
-67.61
%
|
|
Title : Identification of inhibitors of SARS-Cov2 M-Pro enzymatic activity using a small molecule repurposing screen
Year : 2020
Authors : Maria Kuzikov, Elisa Costanzi, Jeanette Reinshagen, Francesca Esposito, Laura Vangeel, Markus Wolf, Bernhard Ellinger, Carsten Claussen, Gerd Geisslinger, Angela Corona, Daniela Iaconis, Carmine Talarico, Candida Manelfi, Rolando Cannalire, Giulia Rossetti, Jonas Gossen, Simone Albani, Francesco Musiani, Katja Herzog, Yang Ye, Barbara Giabbai, Nicola Demitri, Dirk Jochmans, Steven De Jonghe, Jasper Rymenants, Vincenzo Summa, Enzo Tramontano, Andrea R. Beccari, Pieter Leyssen, Paola Storici, Johan Neyts, Philip Gribbon, and Andrea Zaliani
Abstract : Compound repurposing is an important strategy being pursued in the identification of effective treatment against the SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (M-Pro), also termed 3CL-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyprotein into 11 non-structural proteins. We report the results of a screening campaign involving ca 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and chemicals regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, but we have also identified 68 compounds with IC50 lower than 1 uM and 127 compounds with IC50 lower than 5 uM. Profiling showed 67% of confirmed hits were selective (> 5 fold) against other Cys- and Ser- proteases (Chymotrypsin and Cathepsin-L) and MERS 3CL-Pro. Selected compounds were also analysed in their binding characteristics.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
0.22
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
-0.23
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
0.22
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
-0.23
%
|
|
Title : Cytopathic SARS-Cov2 screening on VERO-E6 cells in a large repurposing effort
Year : 2020
Authors : Andrea Zaliani, Laura Vangeel, Jeanette Reinshagen, Daniela Iaconis, Maria Kuzikov, Oliver Keminer, Markus Wolf, Bernhard Ellinger, Francesca Esposito, Angela Corona, Enzo Tramontano, Candida Manelfi, Katja Herzog, Dirk Jochmans, Steven De Jonghe, Winston Chiu, Thibault Francken, Joost Schepers, Caroline Collard, Kayvan Abbasi, Carsten Claussen , Vincenzo Summa, Andrea R. Beccari, Johan Neyts, Philip Gribbon and Pieter Leyssen
Abstract : Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.
Inhibition of recombinant human N-terminal GST tagged EGFR L858R/T790M double mutant (669 to 1210 residues) expressed in insect expression system using peptide as substrate incubated for 2 hrs followed by substrate addition and measured after 30 mins by TR-FRET assay
|
Homo sapiens
|
1.26
nM
|
|
Journal : Bioorg Med Chem
Title : Novel quinazoline derivatives bearing various 6-benzamide moieties as highly selective and potent EGFR inhibitors.
Year : 2018
Volume : 26
Issue : 8.0
First Page : 1740
Last Page : 1750
Authors : Hou W,Ren Y,Zhang Z,Sun H,Ma Y,Yan B
Abstract : A series of novel quinazoline derivatives bearing various C-6 benzamide substituents were synthesized and evaluated as EGFR inhibitors, and most showed significant inhibitory potency against EGFR kinase. In particular, compound 6g possessed potent inhibitory activity against EGFR wild-type (IC = 5 nM), and strong antiproliferative activity against HCC827 and Ba/F3 (L858R) cell lines. Kinase profiling against a panel of 365 kinases showed that 6g was highly selective for EGFR. Furthermore, 6g showed desirable properties in assays of liver microsome metabolic stability and cytochromes P450 inhibition and preliminary pharmacokinetic study. The overall attractive profile of 6g made it an interesting compound for further development.
Inhibition of recombinant human N-terminal GST tagged EGFR d746-750 mutant (669 to 1210 residues) expressed in insect expression system using peptide as substrate incubated for 2 hrs followed by substrate addition and measured after 30 mins by TR-FRET assay
|
Homo sapiens
|
0.04
nM
|
|
Journal : Bioorg Med Chem
Title : Novel quinazoline derivatives bearing various 6-benzamide moieties as highly selective and potent EGFR inhibitors.
Year : 2018
Volume : 26
Issue : 8.0
First Page : 1740
Last Page : 1750
Authors : Hou W,Ren Y,Zhang Z,Sun H,Ma Y,Yan B
Abstract : A series of novel quinazoline derivatives bearing various C-6 benzamide substituents were synthesized and evaluated as EGFR inhibitors, and most showed significant inhibitory potency against EGFR kinase. In particular, compound 6g possessed potent inhibitory activity against EGFR wild-type (IC = 5 nM), and strong antiproliferative activity against HCC827 and Ba/F3 (L858R) cell lines. Kinase profiling against a panel of 365 kinases showed that 6g was highly selective for EGFR. Furthermore, 6g showed desirable properties in assays of liver microsome metabolic stability and cytochromes P450 inhibition and preliminary pharmacokinetic study. The overall attractive profile of 6g made it an interesting compound for further development.
Inhibition of recombinant human N-terminal GST tagged EGFR L858R mutant (669 to 1210 residues) expressed in insect expression system using peptide as substrate incubated for 2 hrs followed by substrate addition and measured after 30 mins by TR-FRET assay
|
Homo sapiens
|
0.1
nM
|
|
Journal : Bioorg Med Chem
Title : Novel quinazoline derivatives bearing various 6-benzamide moieties as highly selective and potent EGFR inhibitors.
Year : 2018
Volume : 26
Issue : 8.0
First Page : 1740
Last Page : 1750
Authors : Hou W,Ren Y,Zhang Z,Sun H,Ma Y,Yan B
Abstract : A series of novel quinazoline derivatives bearing various C-6 benzamide substituents were synthesized and evaluated as EGFR inhibitors, and most showed significant inhibitory potency against EGFR kinase. In particular, compound 6g possessed potent inhibitory activity against EGFR wild-type (IC = 5 nM), and strong antiproliferative activity against HCC827 and Ba/F3 (L858R) cell lines. Kinase profiling against a panel of 365 kinases showed that 6g was highly selective for EGFR. Furthermore, 6g showed desirable properties in assays of liver microsome metabolic stability and cytochromes P450 inhibition and preliminary pharmacokinetic study. The overall attractive profile of 6g made it an interesting compound for further development.
Antiproliferative activity against human PC-9 cells assessed as inhibition of cell growth measured after 72 hrs by CCK-8 assay
|
Homo sapiens
|
0.8585
nM
|
|
Antiproliferative activity against human PB1 cells assessed as inhibition of cell growth measured after 72 hrs by CCK-8 assay
|
Homo sapiens
|
70.19
nM
|
|
Antiproliferative activity against human NCI-H1975 cells assessed as inhibition of cell growth measured after 72 hrs by CCK-8 assay
|
Homo sapiens
|
11.34
nM
|
|
Antiproliferative activity against human HCC827 cells assessed as inhibition of cell growth measured after 72 hrs by CCK-8 assay
|
Homo sapiens
|
0.3776
nM
|
|
Antiproliferative activity against mouse BaF3 cells assessed as inhibition of cell growth measured after 72 hrs by CCK-8 assay
|
Mus musculus
|
9.2
nM
|
|