Synonyms
Status
Molecule Category UNKNOWN
UNII H8J407531S

Structure

InChI Key LCVIRAZGMYMNNT-UHFFFAOYSA-N
Smiles O=C(O)C1(Cc2cccc(Nc3nccs3)n2)CCC(Oc2cccc(Cl)c2F)CC1
InChI
InChI=1S/C22H21ClFN3O3S/c23-16-4-2-5-17(19(16)24)30-15-7-9-22(10-8-15,20(28)29)13-14-3-1-6-18(26-14)27-21-25-11-12-31-21/h1-6,11-12,15H,7-10,13H2,(H,28,29)(H,25,26,27)

Physicochemical Descriptors

Property Name Value
Molecular Formula C22H21ClFN3O3S
Molecular Weight 461.95
AlogP 5.71
Hydrogen Bond Acceptor 6.0
Hydrogen Bond Donor 2.0
Number of Rotational Bond 7.0
Polar Surface Area 84.34
Molecular species ACID
Aromatic Rings 3.0
Heavy Atoms 31.0

Bioactivity

Mechanism of Action Action Reference
Serine/threonine-protein kinase Aurora-A inhibitor INHIBITOR PubMed
Protein: Serine/threonine-protein kinase Aurora-A

Description: Aurora kinase A

Organism : Homo sapiens

O14965 ENSG00000087586
Assay Description Organism Bioactivity Reference
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 62.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 77.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 121.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 425.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 0.1 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 164.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 11.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 202.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 724.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 24.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 25.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 183.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 343.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 841.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 388.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 707.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 6.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 473.0 nM

Cross References

Resources Reference
ChEBI 125340
ChEMBL CHEMBL3182444
FDA SRS H8J407531S
Guide to Pharmacology 8061
PubChem 24748204
SureChEMBL SCHEMBL1501374
ZINC ZINC000073069245