Cytotoxicity in the absence of hypoxanthine and presence of thymidine against CCRF-CEM cell line
|
Homo sapiens
|
70.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Design, synthesis, and biological evaluation of fluoronitrophenyl substituted folate analogues as potential inhibitors of GAR transformylase and AICAR transformylase.
Year : 2000
Volume : 10
Issue : 13
First Page : 1471
Last Page : 1475
Authors : Boger DL, Marsilje TH, Castro RA, Hedrick MP, Jin Q, Baker SJ, Shim JH, Benkovic SJ.
Abstract : The examination results of a novel series of potential inhibitors of glycinamide ribonucleotide transformylase (GAR Tfase) and aminoimidazole carboxamide transformylase (AICAR Tfase) are reported. These agents incorporate an electrophilic fluoronitrophenyl group that can potentially react with an active site nucleophile or the substrate GAR/AICAR amine via nucleophilic aromatic substitution.
Cytotoxicity in the absence of thymidine and hypoxanthine against CCRF-CEM cell line
|
Homo sapiens
|
130.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Design, synthesis, and biological evaluation of fluoronitrophenyl substituted folate analogues as potential inhibitors of GAR transformylase and AICAR transformylase.
Year : 2000
Volume : 10
Issue : 13
First Page : 1471
Last Page : 1475
Authors : Boger DL, Marsilje TH, Castro RA, Hedrick MP, Jin Q, Baker SJ, Shim JH, Benkovic SJ.
Abstract : The examination results of a novel series of potential inhibitors of glycinamide ribonucleotide transformylase (GAR Tfase) and aminoimidazole carboxamide transformylase (AICAR Tfase) are reported. These agents incorporate an electrophilic fluoronitrophenyl group that can potentially react with an active site nucleophile or the substrate GAR/AICAR amine via nucleophilic aromatic substitution.
Cytotoxicity against human lymphoblastic leukemic CCRF-CEM cell line was evaluated as the concentration required for 50% inhibition of the growth of the control value
|
Homo sapiens
|
16.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and biological activity of acyclic analogues of 5,10-dideaza-5,6,7,8-tetrahydrofolic acid.
Year : 1992
Volume : 35
Issue : 6
First Page : 1109
Last Page : 1116
Authors : Shih C, Gossett LS, Worzalla JF, Rinzel SM, Grindey GB, Harrington PM, Taylor EC.
Abstract : The synthesis and biological evaluation of a number of analogues of N-[4-[4-(2,4-diamino-1,6-dihydro-6-oxo-5-pyrimidyl) butyl]benzoyl]-L-glutamic acid (2) (7-DM-DDATHF), an acyclic modification of the novel folate antimetabolite 5,10-dideazatetrahydrofolic acid (DDATHF), are described. The synthetic procedure utilized previously for the synthesis of 2, 15, and 16 was extended to the preparation of analogues modified in the benzoyl region with thiophene and methylene groups replacing the benzene ring (compounds 27a-c) and in the glutamate region with aspartic acid and phenylalanine replacing L-glutamic acid (compounds 36, 37). The 2-amino-4,6-dioxo derivative 33 was obtained from intermediate 30 via a palladium-catalyzed carbon-carbon coupling reaction with diethyl (4-iodobenzoyl)-L-glutamate, followed by reduction and removal of protecting groups with base. Cell culture cytotoxicity studies of all of the above acyclic analogues of DDATHF against CCRF-CEM human lymphoblastic leukemic cells gave IC50s ranging from 0.042 greater than 48 microM. Inhibition and cell culture reversal studies against isolated enzymes suggest the mode of action of these compounds. Compound 2 was only 3-fold less inhibitory toward glycinamide ribonucleotide formyltransferase (GARFT, isolated from L1210 leukemic cells) than DDATHF itself. These acyclic analogues were less efficient substrates for the enzyme folylpolyglutamate synthetase (FPGS) compared with their bicyclic counterparts. Moderate antitumor activity was observed for compound 2 against 6C3HED lymphosarcoma and C3H mammary adenocarcinoma in vivo.
In vitro antitumor activity was assessed from rate of cell growth of CCRF/CEM cell line
|
Homo sapiens
|
15.0
nM
|
|
In vitro antitumor activity was assessed from rate of cell growth of CCRF/CEM cell line
|
Homo sapiens
|
16.0
nM
|
|
Journal : J. Med. Chem.
Title : Thienyl and thiazolyl acyclic analogues of 5-deazatetrahydrofolic acid.
Year : 1994
Volume : 37
Issue : 13
First Page : 2112
Last Page : 2115
Authors : Hodson SJ, Bigham EC, Duch DS, Smith GK, Ferone R.
Abstract : Analogues of N-[4-[[3-(2,4-diamino-1,6-dihydro-6-oxo-5-pyrimidinyl)propyl]amino] benzoyl]-L-glutamic acid (5-DACTHF), in which the phenylene group is replaced by either a thienoyl or a thiazolyl group were synthesized. These compounds were prepared by reductive amination of suitably protected pyrimidinylpropionaldehyde with the aminoaroyl glutamates. These glutamates were in turn synthesized from the corresponding nitroaroyl carboxylic acids by condensation with protected glutamic acid followed by catalytic reduction. The compounds were tested as inhibitors of methotrexate uptake as a measure of binding to the reduced folate transport system, as inhibitors of glycinamide ribonucleotide transformylase, as substrates for folylpolyglutamate synthetase, and as inhibitors of tumor cell growth in cell culture. The thiophene analogue was found to be equal in activity to 5-DACTHF in the MCF-7 cell growth inhibition assay while the thiazole analogue was 9-fold more active. Indeed this thiazole was over 4 times more active in the MCF-7 cell line than the clinically investigated compound 5,10-dideaza-5,6,7,8-tetrahydrofolic acid (DDATHF).
Tested for the growth inhibition of CCRF-CEM, a human T-cell derived lymphoblastic leukemic cell line
|
Homo sapiens
|
0.007
ug.mL-1
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Synthesis and biological activity of 2-desamino and 4-deoxy analogs of 5,10-dideazatetrahydrofolic acid (DDATHF)
Year : 1993
Volume : 3
Issue : 12
First Page : 2657
Last Page : 2660
Authors : Shih C, Hu Y, Gossett L, Habeck L, Mendelsohn L, Grindey G
Compound was tested for its antitumor activity against human lymphoblastic leukemic cells(CCRF-CEM) in vitro
|
Homo sapiens
|
20.0
nM
|
|
Compound was tested for its antitumor activity against human lymphoblastic leukemic cells(CCRF-CEM) in vitro
|
Homo sapiens
|
8.0
nM
|
|
Compound was tested for its antitumor activity against human lymphoblastic leukemic cells(CCRF-CEM) in vitro
|
Homo sapiens
|
5.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and antitumor activity of 5-deaza-5,6,7,8-tetrahydrofolic acid and its N10-substituted analogues.
Year : 1989
Volume : 32
Issue : 7
First Page : 1517
Last Page : 1522
Authors : Taylor EC, Hamby JM, Shih C, Grindey GB, Rinzel SM, Beardsley GP, Moran RG.
Abstract : Syntheses of 5-deaza-5,6,7,8-tetrahydrofolic acid (7a) and its 10-formyl (7b), 10-acetyl (7c), and 10-methyl (7d) derivatives are described. These compounds, prepared as analogues of 5,10-dideaza-5,6,7,8-tetrahydrofolic acid (DDATHF), the lead compound of a new class of folate antimetabolites, exhibit potent growth inhibition against leukemic cells in culture as well as substantial antitumor activity against transplantable murine solid tumors in vivo.
Tested in vitro for cellular cytotoxicity against human T-cell derived lymphoblastic leukemia (CCRF-CEM) cells
|
Homo sapiens
|
15.2
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Synthesis of a pyrimido[4,5-b]azepine analog of 5,10-dideaza-5,6,7,8-tetrahydrofolic acid (DDATHF)
Year : 1997
Volume : 7
Issue : 4
First Page : 453
Last Page : 456
Authors : Taylor EC, Dowling JE
The compound was tested for its cytotoxicity against CCRF-CEM human leukemic cells using 72 hrs assay
|
Homo sapiens
|
0.007
ug.mL-1
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Synthesis and biological activity of nor- and homo-5,10-dideazatetrahydrofolic acid
Year : 1992
Volume : 2
Issue : 4
First Page : 339
Last Page : 342
Authors : Shih C, Grindey G, Taylor E, Harrington P
Tested for the inhibition of recombinant human monofunctional Glycinamide ribonucleotide formyltransferase
|
None
|
130.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Synthesis and biological activity of 2-desamino and 4-deoxy analogs of 5,10-dideazatetrahydrofolic acid (DDATHF)
Year : 1993
Volume : 3
Issue : 12
First Page : 2657
Last Page : 2660
Authors : Shih C, Hu Y, Gossett L, Habeck L, Mendelsohn L, Grindey G
Inhibitory activity against glycinamide ribonucleotide formyltransferase (GARFT) from L1210 murine leukemic cells
|
None
|
0.00012
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Synthesis and biological activity of nor- and homo-5,10-dideazatetrahydrofolic acid
Year : 1992
Volume : 2
Issue : 4
First Page : 339
Last Page : 342
Authors : Shih C, Grindey G, Taylor E, Harrington P
Tested for the inhibition of trifunctional Glycinamide ribonucleotide formyltransferase isolated from murine L1210 cells.
|
Mus musculus
|
120.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Synthesis and biological activity of 2-desamino and 4-deoxy analogs of 5,10-dideazatetrahydrofolic acid (DDATHF)
Year : 1993
Volume : 3
Issue : 12
First Page : 2657
Last Page : 2660
Authors : Shih C, Hu Y, Gossett L, Habeck L, Mendelsohn L, Grindey G
Tested in vitro for its inhibition of trifunctional glycinamide ribonucleotide formyltransferase (GARFT) isolated from murine L1210 leukemia cells
|
None
|
59.7
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Synthesis of a pyrimido[4,5-b]azepine analog of 5,10-dideaza-5,6,7,8-tetrahydrofolic acid (DDATHF)
Year : 1997
Volume : 7
Issue : 4
First Page : 453
Last Page : 456
Authors : Taylor EC, Dowling JE
Ability to inhibit glycinamide ribonucleotide transformylase (GAR-Tfase) in vitro, using hog liver with (6R)-10-formyl-FH4 as cofactor
|
Sus scrofa
|
220.0
nM
|
|
Journal : J. Med. Chem.
Title : Thienyl and thiazolyl acyclic analogues of 5-deazatetrahydrofolic acid.
Year : 1994
Volume : 37
Issue : 13
First Page : 2112
Last Page : 2115
Authors : Hodson SJ, Bigham EC, Duch DS, Smith GK, Ferone R.
Abstract : Analogues of N-[4-[[3-(2,4-diamino-1,6-dihydro-6-oxo-5-pyrimidinyl)propyl]amino] benzoyl]-L-glutamic acid (5-DACTHF), in which the phenylene group is replaced by either a thienoyl or a thiazolyl group were synthesized. These compounds were prepared by reductive amination of suitably protected pyrimidinylpropionaldehyde with the aminoaroyl glutamates. These glutamates were in turn synthesized from the corresponding nitroaroyl carboxylic acids by condensation with protected glutamic acid followed by catalytic reduction. The compounds were tested as inhibitors of methotrexate uptake as a measure of binding to the reduced folate transport system, as inhibitors of glycinamide ribonucleotide transformylase, as substrates for folylpolyglutamate synthetase, and as inhibitors of tumor cell growth in cell culture. The thiophene analogue was found to be equal in activity to 5-DACTHF in the MCF-7 cell growth inhibition assay while the thiazole analogue was 9-fold more active. Indeed this thiazole was over 4 times more active in the MCF-7 cell line than the clinically investigated compound 5,10-dideaza-5,6,7,8-tetrahydrofolic acid (DDATHF).
Inhibition of human recombinant GAR Tfase
|
Homo sapiens
|
60.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of a potent, nonpolyglutamatable inhibitor of glycinamide ribonucleotide transformylase.
Year : 2006
Volume : 49
Issue : 10
First Page : 2998
Last Page : 3002
Authors : DeMartino JK, Hwang I, Xu L, Wilson IA, Boger DL.
Abstract : Glycinamide ribonucleotide transformylase (GAR Tfase) catalyzes the first of two formyl transfer steps in the de novo purine biosynthetic pathway that require folate cofactors. Herein we report the discovery of a potent, nonpolyglutamatable, and selective inhibitor of GAR Tfase. Compound 12, which possesses a tetrazole in place of the gamma-carboxylic acid in the l-glutamate subunit of the potent GAR Tfase inhibitor 1, was active in cellular-based functional assays exhibiting purine-sensitive cytotoxic activity (IC(50) = 40 nM, CCRF-CEM) and was selective for inhibition of rhGAR Tfase (K(i) = 130 nM). Notably, 12 was only 2.5-fold less potent than 1 in cellular assays and 4-fold less potent against rhGAR Tfase. Like 1, this functional activity of 12 in the cell-based assay benefits from and requires transport into the cell by the reduced folate carrier but, unlike 1, is independent of folyl polyglutamate synthase (FPGS) expression levels and polyglutamation.
Antiproliferative activity against human CCRF-CEM cell line
|
Homo sapiens
|
200.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of a potent, nonpolyglutamatable inhibitor of glycinamide ribonucleotide transformylase.
Year : 2006
Volume : 49
Issue : 10
First Page : 2998
Last Page : 3002
Authors : DeMartino JK, Hwang I, Xu L, Wilson IA, Boger DL.
Abstract : Glycinamide ribonucleotide transformylase (GAR Tfase) catalyzes the first of two formyl transfer steps in the de novo purine biosynthetic pathway that require folate cofactors. Herein we report the discovery of a potent, nonpolyglutamatable, and selective inhibitor of GAR Tfase. Compound 12, which possesses a tetrazole in place of the gamma-carboxylic acid in the l-glutamate subunit of the potent GAR Tfase inhibitor 1, was active in cellular-based functional assays exhibiting purine-sensitive cytotoxic activity (IC(50) = 40 nM, CCRF-CEM) and was selective for inhibition of rhGAR Tfase (K(i) = 130 nM). Notably, 12 was only 2.5-fold less potent than 1 in cellular assays and 4-fold less potent against rhGAR Tfase. Like 1, this functional activity of 12 in the cell-based assay benefits from and requires transport into the cell by the reduced folate carrier but, unlike 1, is independent of folyl polyglutamate synthase (FPGS) expression levels and polyglutamation.
Antiproliferative activity against human CCRF-CEM cell line in presence of thymidine
|
Homo sapiens
|
200.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of a potent, nonpolyglutamatable inhibitor of glycinamide ribonucleotide transformylase.
Year : 2006
Volume : 49
Issue : 10
First Page : 2998
Last Page : 3002
Authors : DeMartino JK, Hwang I, Xu L, Wilson IA, Boger DL.
Abstract : Glycinamide ribonucleotide transformylase (GAR Tfase) catalyzes the first of two formyl transfer steps in the de novo purine biosynthetic pathway that require folate cofactors. Herein we report the discovery of a potent, nonpolyglutamatable, and selective inhibitor of GAR Tfase. Compound 12, which possesses a tetrazole in place of the gamma-carboxylic acid in the l-glutamate subunit of the potent GAR Tfase inhibitor 1, was active in cellular-based functional assays exhibiting purine-sensitive cytotoxic activity (IC(50) = 40 nM, CCRF-CEM) and was selective for inhibition of rhGAR Tfase (K(i) = 130 nM). Notably, 12 was only 2.5-fold less potent than 1 in cellular assays and 4-fold less potent against rhGAR Tfase. Like 1, this functional activity of 12 in the cell-based assay benefits from and requires transport into the cell by the reduced folate carrier but, unlike 1, is independent of folyl polyglutamate synthase (FPGS) expression levels and polyglutamation.
Inhibition of mouse recombinant GARFTase
|
Mus musculus
|
780.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and biological activity of a novel series of 6-substituted thieno[2,3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors over the reduced folate carrier and proton-coupled folate transporter for cellular entry.
Year : 2009
Volume : 52
Issue : 9
First Page : 2940
Last Page : 2951
Authors : Deng Y, Zhou X, Kugel Desmoulin S, Wu J, Cherian C, Hou Z, Matherly LH, Gangjee A.
Abstract : A series of seven 2-amino-4-oxo-6-substituted thieno[2,3-d]pyrimidines with bridge length variations (from 2 to 8 carbon atoms) were synthesized as selective folate receptor (FR) alpha and beta substrates and as antitumor agents. The syntheses were accomplished from appropriate allylalcohols and 4-iodobenzoate to afford the aldehydes, which were converted to the appropriate 2-amino-4-carbethoxy-5-substituted thiophenes 23-29. Cyclization with chloroformamidine afforded the thieno[2,3-d]pyrimidines 30-36, which were hydrolyzed and coupled with diethyl-L-glutamate, followed by saponification, to give the target compounds 2-8. Compounds 3-6 were potent growth inhibitors (IC(50) 4.7-334 nM) of human tumor cells (KB and IGROV1) that express FRs. In addition, compounds 3-6 inhibited the growth of Chinese hamster ovary (CHO) cells that expressed FRs but not the reduced folate carrier (RFC) or proton-coupled folate transporter (PCFT). However, the compounds were inactive toward CHO cells that lacked FRs but contained either the RFC or PCFT. By nucleoside and 5-amino-4-imidazole carboxamide (AICA) protection studies, along with in vitro and in situ enzyme activity assays, the mechanism of antitumor activity was identified as the dual inhibition of glycinamide ribonucleotide formyltransferase and, likely, AICA ribonucleotide formyltransferase. The dual inhibitory activity of the active thieno[2,3-d]pyrimidine antifolates and the FR specificity represent unique mechanistic features for these compounds distinct from all other known antifolates. The potent inhibitory effects of compounds 3-6 toward cells expressing FRs but not PCFT provide direct evidence that cellular uptake of this series of compounds by FRs does not depend on the presence of PCFT and argues that direct coupling between these transporters is not obligatory.
Inhibition of GARFTase in human KB cells assessed as inhibition of incorporation of [14C]glycine into [14C]formyl GAR after 30 mins in presence of azaserine
|
Homo sapiens
|
14.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and biological activity of a novel series of 6-substituted thieno[2,3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors over the reduced folate carrier and proton-coupled folate transporter for cellular entry.
Year : 2009
Volume : 52
Issue : 9
First Page : 2940
Last Page : 2951
Authors : Deng Y, Zhou X, Kugel Desmoulin S, Wu J, Cherian C, Hou Z, Matherly LH, Gangjee A.
Abstract : A series of seven 2-amino-4-oxo-6-substituted thieno[2,3-d]pyrimidines with bridge length variations (from 2 to 8 carbon atoms) were synthesized as selective folate receptor (FR) alpha and beta substrates and as antitumor agents. The syntheses were accomplished from appropriate allylalcohols and 4-iodobenzoate to afford the aldehydes, which were converted to the appropriate 2-amino-4-carbethoxy-5-substituted thiophenes 23-29. Cyclization with chloroformamidine afforded the thieno[2,3-d]pyrimidines 30-36, which were hydrolyzed and coupled with diethyl-L-glutamate, followed by saponification, to give the target compounds 2-8. Compounds 3-6 were potent growth inhibitors (IC(50) 4.7-334 nM) of human tumor cells (KB and IGROV1) that express FRs. In addition, compounds 3-6 inhibited the growth of Chinese hamster ovary (CHO) cells that expressed FRs but not the reduced folate carrier (RFC) or proton-coupled folate transporter (PCFT). However, the compounds were inactive toward CHO cells that lacked FRs but contained either the RFC or PCFT. By nucleoside and 5-amino-4-imidazole carboxamide (AICA) protection studies, along with in vitro and in situ enzyme activity assays, the mechanism of antitumor activity was identified as the dual inhibition of glycinamide ribonucleotide formyltransferase and, likely, AICA ribonucleotide formyltransferase. The dual inhibitory activity of the active thieno[2,3-d]pyrimidine antifolates and the FR specificity represent unique mechanistic features for these compounds distinct from all other known antifolates. The potent inhibitory effects of compounds 3-6 toward cells expressing FRs but not PCFT provide direct evidence that cellular uptake of this series of compounds by FRs does not depend on the presence of PCFT and argues that direct coupling between these transporters is not obligatory.
Inhibition of Escherichia coli GAR transformylase
|
Escherichia coli
|
100.0
nM
|
|
Journal : J. Biol. Chem.
Title : Structure-based design, synthesis, evaluation, and crystal structures of transition state analogue inhibitors of inosine monophosphate cyclohydrolase.
Year : 2007
Volume : 282
Issue : 17
First Page : 13033
Last Page : 13046
Authors : Xu L, Chong Y, Hwang I, D'Onofrio A, Amore K, Beardsley GP, Li C, Olson AJ, Boger DL, Wilson IA.
Abstract : The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATIC in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme.
Inhibition of human recombinant GAR transformylase
|
Homo sapiens
|
60.0
nM
|
|
Journal : J. Biol. Chem.
Title : Structure-based design, synthesis, evaluation, and crystal structures of transition state analogue inhibitors of inosine monophosphate cyclohydrolase.
Year : 2007
Volume : 282
Issue : 17
First Page : 13033
Last Page : 13046
Authors : Xu L, Chong Y, Hwang I, D'Onofrio A, Amore K, Beardsley GP, Li C, Olson AJ, Boger DL, Wilson IA.
Abstract : The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATIC in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme.
Antiproliferative activity against human RFC expressing Chinese hamster PC43-10 cells
|
Cricetulus griseus
|
12.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity.
Year : 2008
Volume : 51
Issue : 16
First Page : 5052
Last Page : 5063
Authors : Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A.
Abstract : 6-Substituted classical pyrrolo[2,3-d]pyrimidine antifolates with a three- to six-carbon bridge between the heterocycle and the benzoyl-L-glutamate (compounds 2-5, respectively) were synthesized starting from methyl 4-formylbenzoate and a Wittig reaction with the appropriate triphenylphosphonium bromide, followed by reduction and conversion to the alpha-bromomethylketones. Cyclocondensation of 2,4-diamino-4-oxopyrimidine with the alpha-bromoketones, coupling with diethyl-L-glutamate, and saponification afforded 2-5. Compounds 2-5 had negligible substrate activity for RFC but showed variably potent (nanomolar) and selective inhibitory activities toward Chinese hamster ovary cells that expressed FRalpha or FRbeta and toward FRalpha-expressing KB and IGROV1 human tumor cells. Inhibition of KB cell colony formation was also observed. Glycinamide ribonucleotide formyl transferase (GARFTase) was identified as the primary intracellular target of the pyrrolo[2,3-d]pyrimidines. The combined properties of selective FR targeting, lack of RFC transport, and GARFTase inhibition resulting in potent antitumor activity are unprecedented and warrant development of these analogues as antitumor agents.
Antiproliferative activity against human FRalpha expressing Chinese hamster RT16 cells
|
Cricetulus griseus
|
12.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity.
Year : 2008
Volume : 51
Issue : 16
First Page : 5052
Last Page : 5063
Authors : Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A.
Abstract : 6-Substituted classical pyrrolo[2,3-d]pyrimidine antifolates with a three- to six-carbon bridge between the heterocycle and the benzoyl-L-glutamate (compounds 2-5, respectively) were synthesized starting from methyl 4-formylbenzoate and a Wittig reaction with the appropriate triphenylphosphonium bromide, followed by reduction and conversion to the alpha-bromomethylketones. Cyclocondensation of 2,4-diamino-4-oxopyrimidine with the alpha-bromoketones, coupling with diethyl-L-glutamate, and saponification afforded 2-5. Compounds 2-5 had negligible substrate activity for RFC but showed variably potent (nanomolar) and selective inhibitory activities toward Chinese hamster ovary cells that expressed FRalpha or FRbeta and toward FRalpha-expressing KB and IGROV1 human tumor cells. Inhibition of KB cell colony formation was also observed. Glycinamide ribonucleotide formyl transferase (GARFTase) was identified as the primary intracellular target of the pyrrolo[2,3-d]pyrimidines. The combined properties of selective FR targeting, lack of RFC transport, and GARFTase inhibition resulting in potent antitumor activity are unprecedented and warrant development of these analogues as antitumor agents.
Antiproliferative activity against human FRalpha expressing Chinese hamster RT16 cells in presence of folic acid
|
Cricetulus griseus
|
188.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity.
Year : 2008
Volume : 51
Issue : 16
First Page : 5052
Last Page : 5063
Authors : Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A.
Abstract : 6-Substituted classical pyrrolo[2,3-d]pyrimidine antifolates with a three- to six-carbon bridge between the heterocycle and the benzoyl-L-glutamate (compounds 2-5, respectively) were synthesized starting from methyl 4-formylbenzoate and a Wittig reaction with the appropriate triphenylphosphonium bromide, followed by reduction and conversion to the alpha-bromomethylketones. Cyclocondensation of 2,4-diamino-4-oxopyrimidine with the alpha-bromoketones, coupling with diethyl-L-glutamate, and saponification afforded 2-5. Compounds 2-5 had negligible substrate activity for RFC but showed variably potent (nanomolar) and selective inhibitory activities toward Chinese hamster ovary cells that expressed FRalpha or FRbeta and toward FRalpha-expressing KB and IGROV1 human tumor cells. Inhibition of KB cell colony formation was also observed. Glycinamide ribonucleotide formyl transferase (GARFTase) was identified as the primary intracellular target of the pyrrolo[2,3-d]pyrimidines. The combined properties of selective FR targeting, lack of RFC transport, and GARFTase inhibition resulting in potent antitumor activity are unprecedented and warrant development of these analogues as antitumor agents.
Antiproliferative activity against human FRbeta expressing Chinese hamster D4 cells
|
Cricetulus griseus
|
2.6
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity.
Year : 2008
Volume : 51
Issue : 16
First Page : 5052
Last Page : 5063
Authors : Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A.
Abstract : 6-Substituted classical pyrrolo[2,3-d]pyrimidine antifolates with a three- to six-carbon bridge between the heterocycle and the benzoyl-L-glutamate (compounds 2-5, respectively) were synthesized starting from methyl 4-formylbenzoate and a Wittig reaction with the appropriate triphenylphosphonium bromide, followed by reduction and conversion to the alpha-bromomethylketones. Cyclocondensation of 2,4-diamino-4-oxopyrimidine with the alpha-bromoketones, coupling with diethyl-L-glutamate, and saponification afforded 2-5. Compounds 2-5 had negligible substrate activity for RFC but showed variably potent (nanomolar) and selective inhibitory activities toward Chinese hamster ovary cells that expressed FRalpha or FRbeta and toward FRalpha-expressing KB and IGROV1 human tumor cells. Inhibition of KB cell colony formation was also observed. Glycinamide ribonucleotide formyl transferase (GARFTase) was identified as the primary intracellular target of the pyrrolo[2,3-d]pyrimidines. The combined properties of selective FR targeting, lack of RFC transport, and GARFTase inhibition resulting in potent antitumor activity are unprecedented and warrant development of these analogues as antitumor agents.
Antiproliferative activity against human FRbeta expressing Chinese hamster D4 cells in presence of folic acid
|
Cricetulus griseus
|
275.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity.
Year : 2008
Volume : 51
Issue : 16
First Page : 5052
Last Page : 5063
Authors : Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A.
Abstract : 6-Substituted classical pyrrolo[2,3-d]pyrimidine antifolates with a three- to six-carbon bridge between the heterocycle and the benzoyl-L-glutamate (compounds 2-5, respectively) were synthesized starting from methyl 4-formylbenzoate and a Wittig reaction with the appropriate triphenylphosphonium bromide, followed by reduction and conversion to the alpha-bromomethylketones. Cyclocondensation of 2,4-diamino-4-oxopyrimidine with the alpha-bromoketones, coupling with diethyl-L-glutamate, and saponification afforded 2-5. Compounds 2-5 had negligible substrate activity for RFC but showed variably potent (nanomolar) and selective inhibitory activities toward Chinese hamster ovary cells that expressed FRalpha or FRbeta and toward FRalpha-expressing KB and IGROV1 human tumor cells. Inhibition of KB cell colony formation was also observed. Glycinamide ribonucleotide formyl transferase (GARFTase) was identified as the primary intracellular target of the pyrrolo[2,3-d]pyrimidines. The combined properties of selective FR targeting, lack of RFC transport, and GARFTase inhibition resulting in potent antitumor activity are unprecedented and warrant development of these analogues as antitumor agents.
Antiproliferative activity against human RFC and FRalpha expressing human KB cells
|
Homo sapiens
|
1.2
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity.
Year : 2008
Volume : 51
Issue : 16
First Page : 5052
Last Page : 5063
Authors : Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A.
Abstract : 6-Substituted classical pyrrolo[2,3-d]pyrimidine antifolates with a three- to six-carbon bridge between the heterocycle and the benzoyl-L-glutamate (compounds 2-5, respectively) were synthesized starting from methyl 4-formylbenzoate and a Wittig reaction with the appropriate triphenylphosphonium bromide, followed by reduction and conversion to the alpha-bromomethylketones. Cyclocondensation of 2,4-diamino-4-oxopyrimidine with the alpha-bromoketones, coupling with diethyl-L-glutamate, and saponification afforded 2-5. Compounds 2-5 had negligible substrate activity for RFC but showed variably potent (nanomolar) and selective inhibitory activities toward Chinese hamster ovary cells that expressed FRalpha or FRbeta and toward FRalpha-expressing KB and IGROV1 human tumor cells. Inhibition of KB cell colony formation was also observed. Glycinamide ribonucleotide formyl transferase (GARFTase) was identified as the primary intracellular target of the pyrrolo[2,3-d]pyrimidines. The combined properties of selective FR targeting, lack of RFC transport, and GARFTase inhibition resulting in potent antitumor activity are unprecedented and warrant development of these analogues as antitumor agents.
Antiproliferative activity against human RFC and FRalpha expressing human KB cells in presence of folic acid
|
Homo sapiens
|
31.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity.
Year : 2008
Volume : 51
Issue : 16
First Page : 5052
Last Page : 5063
Authors : Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A.
Abstract : 6-Substituted classical pyrrolo[2,3-d]pyrimidine antifolates with a three- to six-carbon bridge between the heterocycle and the benzoyl-L-glutamate (compounds 2-5, respectively) were synthesized starting from methyl 4-formylbenzoate and a Wittig reaction with the appropriate triphenylphosphonium bromide, followed by reduction and conversion to the alpha-bromomethylketones. Cyclocondensation of 2,4-diamino-4-oxopyrimidine with the alpha-bromoketones, coupling with diethyl-L-glutamate, and saponification afforded 2-5. Compounds 2-5 had negligible substrate activity for RFC but showed variably potent (nanomolar) and selective inhibitory activities toward Chinese hamster ovary cells that expressed FRalpha or FRbeta and toward FRalpha-expressing KB and IGROV1 human tumor cells. Inhibition of KB cell colony formation was also observed. Glycinamide ribonucleotide formyl transferase (GARFTase) was identified as the primary intracellular target of the pyrrolo[2,3-d]pyrimidines. The combined properties of selective FR targeting, lack of RFC transport, and GARFTase inhibition resulting in potent antitumor activity are unprecedented and warrant development of these analogues as antitumor agents.
Antiproliferative activity against human RFC and FRalpha expressing human IGROV1 cells
|
Homo sapiens
|
3.1
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity.
Year : 2008
Volume : 51
Issue : 16
First Page : 5052
Last Page : 5063
Authors : Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A.
Abstract : 6-Substituted classical pyrrolo[2,3-d]pyrimidine antifolates with a three- to six-carbon bridge between the heterocycle and the benzoyl-L-glutamate (compounds 2-5, respectively) were synthesized starting from methyl 4-formylbenzoate and a Wittig reaction with the appropriate triphenylphosphonium bromide, followed by reduction and conversion to the alpha-bromomethylketones. Cyclocondensation of 2,4-diamino-4-oxopyrimidine with the alpha-bromoketones, coupling with diethyl-L-glutamate, and saponification afforded 2-5. Compounds 2-5 had negligible substrate activity for RFC but showed variably potent (nanomolar) and selective inhibitory activities toward Chinese hamster ovary cells that expressed FRalpha or FRbeta and toward FRalpha-expressing KB and IGROV1 human tumor cells. Inhibition of KB cell colony formation was also observed. Glycinamide ribonucleotide formyl transferase (GARFTase) was identified as the primary intracellular target of the pyrrolo[2,3-d]pyrimidines. The combined properties of selective FR targeting, lack of RFC transport, and GARFTase inhibition resulting in potent antitumor activity are unprecedented and warrant development of these analogues as antitumor agents.
Antiproliferative activity against human RFC and FRalpha expressing human IGROV1 cells in presence of folic acid
|
Homo sapiens
|
16.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity.
Year : 2008
Volume : 51
Issue : 16
First Page : 5052
Last Page : 5063
Authors : Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A.
Abstract : 6-Substituted classical pyrrolo[2,3-d]pyrimidine antifolates with a three- to six-carbon bridge between the heterocycle and the benzoyl-L-glutamate (compounds 2-5, respectively) were synthesized starting from methyl 4-formylbenzoate and a Wittig reaction with the appropriate triphenylphosphonium bromide, followed by reduction and conversion to the alpha-bromomethylketones. Cyclocondensation of 2,4-diamino-4-oxopyrimidine with the alpha-bromoketones, coupling with diethyl-L-glutamate, and saponification afforded 2-5. Compounds 2-5 had negligible substrate activity for RFC but showed variably potent (nanomolar) and selective inhibitory activities toward Chinese hamster ovary cells that expressed FRalpha or FRbeta and toward FRalpha-expressing KB and IGROV1 human tumor cells. Inhibition of KB cell colony formation was also observed. Glycinamide ribonucleotide formyl transferase (GARFTase) was identified as the primary intracellular target of the pyrrolo[2,3-d]pyrimidines. The combined properties of selective FR targeting, lack of RFC transport, and GARFTase inhibition resulting in potent antitumor activity are unprecedented and warrant development of these analogues as antitumor agents.
Inhibition of human RFC-mediated [3H]MTX transport in Chinese hamster PC43-10 cells at 10 uM
|
Homo sapiens
|
60.0
%
|
|
Journal : J. Med. Chem.
Title : Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity.
Year : 2008
Volume : 51
Issue : 16
First Page : 5052
Last Page : 5063
Authors : Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A.
Abstract : 6-Substituted classical pyrrolo[2,3-d]pyrimidine antifolates with a three- to six-carbon bridge between the heterocycle and the benzoyl-L-glutamate (compounds 2-5, respectively) were synthesized starting from methyl 4-formylbenzoate and a Wittig reaction with the appropriate triphenylphosphonium bromide, followed by reduction and conversion to the alpha-bromomethylketones. Cyclocondensation of 2,4-diamino-4-oxopyrimidine with the alpha-bromoketones, coupling with diethyl-L-glutamate, and saponification afforded 2-5. Compounds 2-5 had negligible substrate activity for RFC but showed variably potent (nanomolar) and selective inhibitory activities toward Chinese hamster ovary cells that expressed FRalpha or FRbeta and toward FRalpha-expressing KB and IGROV1 human tumor cells. Inhibition of KB cell colony formation was also observed. Glycinamide ribonucleotide formyl transferase (GARFTase) was identified as the primary intracellular target of the pyrrolo[2,3-d]pyrimidines. The combined properties of selective FR targeting, lack of RFC transport, and GARFTase inhibition resulting in potent antitumor activity are unprecedented and warrant development of these analogues as antitumor agents.
Inhibition of mouse recombinant GARFTase
|
Mus musculus
|
780.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity.
Year : 2008
Volume : 51
Issue : 16
First Page : 5052
Last Page : 5063
Authors : Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A.
Abstract : 6-Substituted classical pyrrolo[2,3-d]pyrimidine antifolates with a three- to six-carbon bridge between the heterocycle and the benzoyl-L-glutamate (compounds 2-5, respectively) were synthesized starting from methyl 4-formylbenzoate and a Wittig reaction with the appropriate triphenylphosphonium bromide, followed by reduction and conversion to the alpha-bromomethylketones. Cyclocondensation of 2,4-diamino-4-oxopyrimidine with the alpha-bromoketones, coupling with diethyl-L-glutamate, and saponification afforded 2-5. Compounds 2-5 had negligible substrate activity for RFC but showed variably potent (nanomolar) and selective inhibitory activities toward Chinese hamster ovary cells that expressed FRalpha or FRbeta and toward FRalpha-expressing KB and IGROV1 human tumor cells. Inhibition of KB cell colony formation was also observed. Glycinamide ribonucleotide formyl transferase (GARFTase) was identified as the primary intracellular target of the pyrrolo[2,3-d]pyrimidines. The combined properties of selective FR targeting, lack of RFC transport, and GARFTase inhibition resulting in potent antitumor activity are unprecedented and warrant development of these analogues as antitumor agents.
Inhibition of GARFTase in human KB cells assessed as inhibition of [14C]glycine incorporation into [14C]formylGAR in presence of azaserine
|
Homo sapiens
|
14.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and discovery of high affinity folate receptor-specific glycinamide ribonucleotide formyltransferase inhibitors with antitumor activity.
Year : 2008
Volume : 51
Issue : 16
First Page : 5052
Last Page : 5063
Authors : Deng Y, Wang Y, Cherian C, Hou Z, Buck SA, Matherly LH, Gangjee A.
Abstract : 6-Substituted classical pyrrolo[2,3-d]pyrimidine antifolates with a three- to six-carbon bridge between the heterocycle and the benzoyl-L-glutamate (compounds 2-5, respectively) were synthesized starting from methyl 4-formylbenzoate and a Wittig reaction with the appropriate triphenylphosphonium bromide, followed by reduction and conversion to the alpha-bromomethylketones. Cyclocondensation of 2,4-diamino-4-oxopyrimidine with the alpha-bromoketones, coupling with diethyl-L-glutamate, and saponification afforded 2-5. Compounds 2-5 had negligible substrate activity for RFC but showed variably potent (nanomolar) and selective inhibitory activities toward Chinese hamster ovary cells that expressed FRalpha or FRbeta and toward FRalpha-expressing KB and IGROV1 human tumor cells. Inhibition of KB cell colony formation was also observed. Glycinamide ribonucleotide formyl transferase (GARFTase) was identified as the primary intracellular target of the pyrrolo[2,3-d]pyrimidines. The combined properties of selective FR targeting, lack of RFC transport, and GARFTase inhibition resulting in potent antitumor activity are unprecedented and warrant development of these analogues as antitumor agents.
Inhibition of human recombinant GAR transformylase
|
Homo sapiens
|
60.0
nM
|
|
Journal : J. Med. Chem.
Title : Asymmetric synthesis of inhibitors of glycinamide ribonucleotide transformylase.
Year : 2008
Volume : 51
Issue : 17
First Page : 5441
Last Page : 5448
Authors : DeMartino JK, Hwang I, Connelly S, Wilson IA, Boger DL.
Abstract : Glycinamide ribonucleotide transformylase (GAR Tfase) catalyzes the first of two formyl transfer steps in the de novo purine biosynthetic pathway that require folate cofactors and has emerged as a productive target for antineoplastic therapeutic intervention. The asymmetric synthesis and evaluation of the two diastereomers of 10-methylthio-DDACTHF (10R-3 and 10S-3) and related analogues as potential inhibitors of GAR Tfase are reported. This work, which defines the importance of the C10 stereochemistry for this class of inhibitors of GAR Tfase, revealed that both diastereomers are potent inhibitors of rhGAR Tfase (10R-3 Ki = 210 nM, 10S-3 Ki = 180 nM) that exhibit effective cell growth inhibition (CCRF-CEM IC50 = 80 and 50 nM, respectively), which is dependent on intracellular polyglutamation by folylpolyglutamate synthetase (FPGS) but not intracellular transport by the reduced folate carrier.
Cytotoxicity against human CCRF-CEM cells in absence of thymidine and hypoxanthine
|
Homo sapiens
|
200.0
nM
|
|
Journal : J. Med. Chem.
Title : Asymmetric synthesis of inhibitors of glycinamide ribonucleotide transformylase.
Year : 2008
Volume : 51
Issue : 17
First Page : 5441
Last Page : 5448
Authors : DeMartino JK, Hwang I, Connelly S, Wilson IA, Boger DL.
Abstract : Glycinamide ribonucleotide transformylase (GAR Tfase) catalyzes the first of two formyl transfer steps in the de novo purine biosynthetic pathway that require folate cofactors and has emerged as a productive target for antineoplastic therapeutic intervention. The asymmetric synthesis and evaluation of the two diastereomers of 10-methylthio-DDACTHF (10R-3 and 10S-3) and related analogues as potential inhibitors of GAR Tfase are reported. This work, which defines the importance of the C10 stereochemistry for this class of inhibitors of GAR Tfase, revealed that both diastereomers are potent inhibitors of rhGAR Tfase (10R-3 Ki = 210 nM, 10S-3 Ki = 180 nM) that exhibit effective cell growth inhibition (CCRF-CEM IC50 = 80 and 50 nM, respectively), which is dependent on intracellular polyglutamation by folylpolyglutamate synthetase (FPGS) but not intracellular transport by the reduced folate carrier.
Cytotoxicity against human CCRF-CEM cells in presence of thymidine and absence of hypoxanthine
|
Homo sapiens
|
200.0
nM
|
|
Journal : J. Med. Chem.
Title : Asymmetric synthesis of inhibitors of glycinamide ribonucleotide transformylase.
Year : 2008
Volume : 51
Issue : 17
First Page : 5441
Last Page : 5448
Authors : DeMartino JK, Hwang I, Connelly S, Wilson IA, Boger DL.
Abstract : Glycinamide ribonucleotide transformylase (GAR Tfase) catalyzes the first of two formyl transfer steps in the de novo purine biosynthetic pathway that require folate cofactors and has emerged as a productive target for antineoplastic therapeutic intervention. The asymmetric synthesis and evaluation of the two diastereomers of 10-methylthio-DDACTHF (10R-3 and 10S-3) and related analogues as potential inhibitors of GAR Tfase are reported. This work, which defines the importance of the C10 stereochemistry for this class of inhibitors of GAR Tfase, revealed that both diastereomers are potent inhibitors of rhGAR Tfase (10R-3 Ki = 210 nM, 10S-3 Ki = 180 nM) that exhibit effective cell growth inhibition (CCRF-CEM IC50 = 80 and 50 nM, respectively), which is dependent on intracellular polyglutamation by folylpolyglutamate synthetase (FPGS) but not intracellular transport by the reduced folate carrier.
Displacement of [3H]MTX from human RFC expressed in Chinese hamster PC43-10 cells at 10 uM
|
Homo sapiens
|
50.0
%
|
|
Journal : J. Med. Chem.
Title : Synthesis and antitumor activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry.
Year : 2010
Volume : 53
Issue : 3
First Page : 1306
Last Page : 1318
Authors : Wang L, Cherian C, Desmoulin SK, Polin L, Deng Y, Wu J, Hou Z, White K, Kushner J, Matherly LH, Gangjee A.
Abstract : 2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines with a thienoyl side chain and four to six carbon bridge lengths (compounds 1-3) were synthesized as substrates for folate receptors (FRs) and the proton-coupled folate transporter (PCFT). Conversion of acetylene carboxylic acids to alpha-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidines. Sonogashira coupling with (S)-2-[(5-bromo-thiophene-2-carbonyl)-amino]-pentanedioic acid diethyl ester, followed by hydrogenation and saponification, afforded 1-3. Compounds 1 and 2 potently inhibited KB and IGROV1 human tumor cells that express FR alpha, reduced folate carrier (RFC), and PCFT. The analogs were selective for FR and PCFT over RFC. Glycinamide ribonucleotide formyltransferase was the principal cellular target. In SCID mice with KB tumors, 1 was highly active against both early (3.5 log kill, 1/5 cures) and advanced (3.7 log kill, 4/5 complete remissions) stage tumors. Our results demonstrate potent in vitro and in vivo antitumor activity for 1 due to selective transport by FRs and PCFT over RFC.
Inhibition of mouse recombinant GARFtase assessed as FGAR formation by spectrophotometry
|
Mus musculus
|
780.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and antitumor activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry.
Year : 2010
Volume : 53
Issue : 3
First Page : 1306
Last Page : 1318
Authors : Wang L, Cherian C, Desmoulin SK, Polin L, Deng Y, Wu J, Hou Z, White K, Kushner J, Matherly LH, Gangjee A.
Abstract : 2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines with a thienoyl side chain and four to six carbon bridge lengths (compounds 1-3) were synthesized as substrates for folate receptors (FRs) and the proton-coupled folate transporter (PCFT). Conversion of acetylene carboxylic acids to alpha-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidines. Sonogashira coupling with (S)-2-[(5-bromo-thiophene-2-carbonyl)-amino]-pentanedioic acid diethyl ester, followed by hydrogenation and saponification, afforded 1-3. Compounds 1 and 2 potently inhibited KB and IGROV1 human tumor cells that express FR alpha, reduced folate carrier (RFC), and PCFT. The analogs were selective for FR and PCFT over RFC. Glycinamide ribonucleotide formyltransferase was the principal cellular target. In SCID mice with KB tumors, 1 was highly active against both early (3.5 log kill, 1/5 cures) and advanced (3.7 log kill, 4/5 complete remissions) stage tumors. Our results demonstrate potent in vitro and in vivo antitumor activity for 1 due to selective transport by FRs and PCFT over RFC.
Antiproliferative activity against chinese hamster PC43-10 expressing human RFC assessed as reduction of viable cells after 96 hrs
|
Cricetulus griseus
|
12.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase.
Year : 2011
Volume : 54
Issue : 20
First Page : 7150
Last Page : 7164
Authors : Wang L, Desmoulin SK, Cherian C, Polin L, White K, Kushner J, Fulterer A, Chang MH, Mitchell-Ryan S, Stout M, Romero MF, Hou Z, Matherly LH, Gangjee A.
Abstract : 2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1-3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with l-glutamate diethyl ester, followed by saponification, afforded 1-3. Compound 3 selectively inhibited the proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including KB and IGROV1 human tumor cells, much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1-, 2-, and 4-atom bridge lengths for the activity of this series.
Antiproliferative activity against chinese hamster RT16 cells expressing human FRalpha assessed as reduction of viable cells after 96 hrs
|
Cricetulus griseus
|
12.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase.
Year : 2011
Volume : 54
Issue : 20
First Page : 7150
Last Page : 7164
Authors : Wang L, Desmoulin SK, Cherian C, Polin L, White K, Kushner J, Fulterer A, Chang MH, Mitchell-Ryan S, Stout M, Romero MF, Hou Z, Matherly LH, Gangjee A.
Abstract : 2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1-3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with l-glutamate diethyl ester, followed by saponification, afforded 1-3. Compound 3 selectively inhibited the proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including KB and IGROV1 human tumor cells, much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1-, 2-, and 4-atom bridge lengths for the activity of this series.
Antiproliferative activity against chinese hamster RT16 cells expressing human FRalpha assessed as reduction of viable cells after 96 hrs in the presence of 200 nM folic acid
|
Cricetulus griseus
|
188.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase.
Year : 2011
Volume : 54
Issue : 20
First Page : 7150
Last Page : 7164
Authors : Wang L, Desmoulin SK, Cherian C, Polin L, White K, Kushner J, Fulterer A, Chang MH, Mitchell-Ryan S, Stout M, Romero MF, Hou Z, Matherly LH, Gangjee A.
Abstract : 2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1-3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with l-glutamate diethyl ester, followed by saponification, afforded 1-3. Compound 3 selectively inhibited the proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including KB and IGROV1 human tumor cells, much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1-, 2-, and 4-atom bridge lengths for the activity of this series.
Antiproliferative activity against chinese hamster D4 cells expressing human FRbeta assessed as reduction of viable cells after 96 hrs
|
Cricetulus griseus
|
2.6
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase.
Year : 2011
Volume : 54
Issue : 20
First Page : 7150
Last Page : 7164
Authors : Wang L, Desmoulin SK, Cherian C, Polin L, White K, Kushner J, Fulterer A, Chang MH, Mitchell-Ryan S, Stout M, Romero MF, Hou Z, Matherly LH, Gangjee A.
Abstract : 2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1-3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with l-glutamate diethyl ester, followed by saponification, afforded 1-3. Compound 3 selectively inhibited the proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including KB and IGROV1 human tumor cells, much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1-, 2-, and 4-atom bridge lengths for the activity of this series.
Antiproliferative activity against chinese hamster D4 cells expressing human FRbeta assessed as reduction of viable cells after 96 hrs in the presence of 200 nM folic acid
|
Cricetulus griseus
|
275.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase.
Year : 2011
Volume : 54
Issue : 20
First Page : 7150
Last Page : 7164
Authors : Wang L, Desmoulin SK, Cherian C, Polin L, White K, Kushner J, Fulterer A, Chang MH, Mitchell-Ryan S, Stout M, Romero MF, Hou Z, Matherly LH, Gangjee A.
Abstract : 2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1-3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with l-glutamate diethyl ester, followed by saponification, afforded 1-3. Compound 3 selectively inhibited the proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including KB and IGROV1 human tumor cells, much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1-, 2-, and 4-atom bridge lengths for the activity of this series.
Antiproliferative activity against chinese hamster R2 cells expressing human PCFT assessed as reduction of viable cells after 96 hrs
|
Cricetulus griseus
|
38.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase.
Year : 2011
Volume : 54
Issue : 20
First Page : 7150
Last Page : 7164
Authors : Wang L, Desmoulin SK, Cherian C, Polin L, White K, Kushner J, Fulterer A, Chang MH, Mitchell-Ryan S, Stout M, Romero MF, Hou Z, Matherly LH, Gangjee A.
Abstract : 2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1-3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with l-glutamate diethyl ester, followed by saponification, afforded 1-3. Compound 3 selectively inhibited the proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including KB and IGROV1 human tumor cells, much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1-, 2-, and 4-atom bridge lengths for the activity of this series.
Antiproliferative activity against human KB cells expressing human RFC, FRalpha and PCFT assessed as reduction of viable cells after 96 hrs
|
Homo sapiens
|
1.2
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase.
Year : 2011
Volume : 54
Issue : 20
First Page : 7150
Last Page : 7164
Authors : Wang L, Desmoulin SK, Cherian C, Polin L, White K, Kushner J, Fulterer A, Chang MH, Mitchell-Ryan S, Stout M, Romero MF, Hou Z, Matherly LH, Gangjee A.
Abstract : 2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1-3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with l-glutamate diethyl ester, followed by saponification, afforded 1-3. Compound 3 selectively inhibited the proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including KB and IGROV1 human tumor cells, much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1-, 2-, and 4-atom bridge lengths for the activity of this series.
Antiproliferative activity against human KB cells expressing human RFC, FRalpha and PCFT assessed as reduction of viable cells after 96 hrs in the presence of 200 nM folic acid
|
Homo sapiens
|
31.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase.
Year : 2011
Volume : 54
Issue : 20
First Page : 7150
Last Page : 7164
Authors : Wang L, Desmoulin SK, Cherian C, Polin L, White K, Kushner J, Fulterer A, Chang MH, Mitchell-Ryan S, Stout M, Romero MF, Hou Z, Matherly LH, Gangjee A.
Abstract : 2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1-3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with l-glutamate diethyl ester, followed by saponification, afforded 1-3. Compound 3 selectively inhibited the proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including KB and IGROV1 human tumor cells, much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1-, 2-, and 4-atom bridge lengths for the activity of this series.
Antiproliferative activity against human IGROV1 cells expressing human RFC, FRalpha and PCFT assessed as reduction of viable cells after 96 hrs
|
Homo sapiens
|
3.1
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase.
Year : 2011
Volume : 54
Issue : 20
First Page : 7150
Last Page : 7164
Authors : Wang L, Desmoulin SK, Cherian C, Polin L, White K, Kushner J, Fulterer A, Chang MH, Mitchell-Ryan S, Stout M, Romero MF, Hou Z, Matherly LH, Gangjee A.
Abstract : 2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1-3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with l-glutamate diethyl ester, followed by saponification, afforded 1-3. Compound 3 selectively inhibited the proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including KB and IGROV1 human tumor cells, much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1-, 2-, and 4-atom bridge lengths for the activity of this series.
Antiproliferative activity against human IGROV1 cells expressing human RFC, FRalpha and PCFT assessed as reduction of viable cells after 96 hrs in the presence of 200 nM folic acid
|
Homo sapiens
|
16.0
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase.
Year : 2011
Volume : 54
Issue : 20
First Page : 7150
Last Page : 7164
Authors : Wang L, Desmoulin SK, Cherian C, Polin L, White K, Kushner J, Fulterer A, Chang MH, Mitchell-Ryan S, Stout M, Romero MF, Hou Z, Matherly LH, Gangjee A.
Abstract : 2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1-3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with l-glutamate diethyl ester, followed by saponification, afforded 1-3. Compound 3 selectively inhibited the proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including KB and IGROV1 human tumor cells, much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1-, 2-, and 4-atom bridge lengths for the activity of this series.
Antiproliferative activity against chinese hamster R2 cells expressing human PCFT assessed as inhibition of colony formation after 10 to 14 days
|
Cricetulus griseus
|
29.7
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase.
Year : 2011
Volume : 54
Issue : 20
First Page : 7150
Last Page : 7164
Authors : Wang L, Desmoulin SK, Cherian C, Polin L, White K, Kushner J, Fulterer A, Chang MH, Mitchell-Ryan S, Stout M, Romero MF, Hou Z, Matherly LH, Gangjee A.
Abstract : 2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1-3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with l-glutamate diethyl ester, followed by saponification, afforded 1-3. Compound 3 selectively inhibited the proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including KB and IGROV1 human tumor cells, much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1-, 2-, and 4-atom bridge lengths for the activity of this series.
Inhibition of GARFTase in human IGROV1 cells assessed as reduction in [14C]glycine incorporation into [14C]formyl GAR incubated for 15 hrs in complete folate free RPMI medium in presence of 2 nM leucovorin
|
Homo sapiens
|
5.77
nM
|
|
Journal : J. Med. Chem.
Title : Synthesis and biological activity of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl regioisomers as inhibitors of de novo purine biosynthesis with selectivity for cellular uptake by high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier.
Year : 2012
Volume : 55
Issue : 4
First Page : 1758
Last Page : 1770
Authors : Wang L, Cherian C, Kugel Desmoulin S, Mitchell-Ryan S, Hou Z, Matherly LH, Gangjee A.
Abstract : We previously reported the selective transport of classical 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines with a thienoyl-for-benzoyl-substituted side chain and a three- (3a) and four-carbon (3b) bridge. Compound 3a was more potent than 3b against tumor cells. While 3b was completely selective for transport by folate receptors (FRs) and the proton-coupled folate transporter (PCFT) over the reduced folate carrier (RFC), 3a was not. To determine if decreasing the distance between the bicyclic scaffold and l-glutamate in 3b would preserve transport selectivity and potency against human tumor cells, 3b regioisomers with [1,3] (7 and 8) and [1,2] (4, 5, and 6) substitutions on the thienoyl ring and with acetylenic insertions in the four-atom bridge were synthesized and evaluated. Compounds 7 and 8 were potent nanomolar inhibitors of KB and IGROV1 human tumor cells with complete selectivity for FRα and PCFT over RFC.
Growth inhibition of human KB cells expressing human RFC/FRalpha/PCFT after 96 hrs by CellTiter-blue assay in presence of folic acid
|
Homo sapiens
|
31.0
nM
|
|
Journal : J. Med. Chem.
Title : Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
Year : 2013
Volume : 56
Issue : 21
First Page : 8684
Last Page : 8695
Authors : Wang Y, Cherian C, Orr S, Mitchell-Ryan S, Hou Z, Raghavan S, Matherly LH, Gangjee A.
Abstract : A new series of 6-substituted straight side chain pyrrolo[2,3-d]pyrimidines 3a-d with varying chain lengths (n = 5-8) was designed and synthesized as part of our program to provide targeted antitumor agents with folate receptor (FR) cellular uptake specificity and glycinamide ribonucleotide formyltransferase (GARFTase) inhibition. Carboxylic acids 4a-d were converted to the acid chlorides and reacted with diazomethane, followed by 48% HBr to generate the α-bromomethylketones 5a-d. Condensation of 2,4-diamino-6-hydroxypyrimidine 6 with 5a-d afforded the 6-substituted pyrrolo[2,3-d]pyrimidines 7a-d. Hydrolysis and subsequent coupling with diethyl l-glutamate and saponification afforded target compounds 3a-d. Compounds 3b-d showed selective cellular uptake via FRα and -β, associated with high affinity binding and inhibition of de novo purine nucleotide biosynthesis via GARFTase, resulting in potent inhibition against FR-expressing Chinese hamster cells and human KB tumor cells in culture. Our studies establish, for the first time, that a side chain benzoyl group is not essential for tumor-selective drug uptake by FRα.
Growth inhibition of human KB cells expressing human RFC/FRalpha/PCFT after 96 hrs by CellTiter-blue assay
|
Homo sapiens
|
1.2
nM
|
|
Journal : J. Med. Chem.
Title : Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
Year : 2013
Volume : 56
Issue : 21
First Page : 8684
Last Page : 8695
Authors : Wang Y, Cherian C, Orr S, Mitchell-Ryan S, Hou Z, Raghavan S, Matherly LH, Gangjee A.
Abstract : A new series of 6-substituted straight side chain pyrrolo[2,3-d]pyrimidines 3a-d with varying chain lengths (n = 5-8) was designed and synthesized as part of our program to provide targeted antitumor agents with folate receptor (FR) cellular uptake specificity and glycinamide ribonucleotide formyltransferase (GARFTase) inhibition. Carboxylic acids 4a-d were converted to the acid chlorides and reacted with diazomethane, followed by 48% HBr to generate the α-bromomethylketones 5a-d. Condensation of 2,4-diamino-6-hydroxypyrimidine 6 with 5a-d afforded the 6-substituted pyrrolo[2,3-d]pyrimidines 7a-d. Hydrolysis and subsequent coupling with diethyl l-glutamate and saponification afforded target compounds 3a-d. Compounds 3b-d showed selective cellular uptake via FRα and -β, associated with high affinity binding and inhibition of de novo purine nucleotide biosynthesis via GARFTase, resulting in potent inhibition against FR-expressing Chinese hamster cells and human KB tumor cells in culture. Our studies establish, for the first time, that a side chain benzoyl group is not essential for tumor-selective drug uptake by FRα.
Growth inhibition of Chinese hamster R2 cells expressing human PCFT4 after 96 hrs by CellTiter-blue assay
|
Cricetulus griseus
|
38.0
nM
|
|
Journal : J. Med. Chem.
Title : Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
Year : 2013
Volume : 56
Issue : 21
First Page : 8684
Last Page : 8695
Authors : Wang Y, Cherian C, Orr S, Mitchell-Ryan S, Hou Z, Raghavan S, Matherly LH, Gangjee A.
Abstract : A new series of 6-substituted straight side chain pyrrolo[2,3-d]pyrimidines 3a-d with varying chain lengths (n = 5-8) was designed and synthesized as part of our program to provide targeted antitumor agents with folate receptor (FR) cellular uptake specificity and glycinamide ribonucleotide formyltransferase (GARFTase) inhibition. Carboxylic acids 4a-d were converted to the acid chlorides and reacted with diazomethane, followed by 48% HBr to generate the α-bromomethylketones 5a-d. Condensation of 2,4-diamino-6-hydroxypyrimidine 6 with 5a-d afforded the 6-substituted pyrrolo[2,3-d]pyrimidines 7a-d. Hydrolysis and subsequent coupling with diethyl l-glutamate and saponification afforded target compounds 3a-d. Compounds 3b-d showed selective cellular uptake via FRα and -β, associated with high affinity binding and inhibition of de novo purine nucleotide biosynthesis via GARFTase, resulting in potent inhibition against FR-expressing Chinese hamster cells and human KB tumor cells in culture. Our studies establish, for the first time, that a side chain benzoyl group is not essential for tumor-selective drug uptake by FRα.
Growth inhibition of Chinese hamster D4 cells after 96 hrs by CellTiter-blue assay in presence of folic acid
|
Cricetulus griseus
|
275.0
nM
|
|
Journal : J. Med. Chem.
Title : Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
Year : 2013
Volume : 56
Issue : 21
First Page : 8684
Last Page : 8695
Authors : Wang Y, Cherian C, Orr S, Mitchell-Ryan S, Hou Z, Raghavan S, Matherly LH, Gangjee A.
Abstract : A new series of 6-substituted straight side chain pyrrolo[2,3-d]pyrimidines 3a-d with varying chain lengths (n = 5-8) was designed and synthesized as part of our program to provide targeted antitumor agents with folate receptor (FR) cellular uptake specificity and glycinamide ribonucleotide formyltransferase (GARFTase) inhibition. Carboxylic acids 4a-d were converted to the acid chlorides and reacted with diazomethane, followed by 48% HBr to generate the α-bromomethylketones 5a-d. Condensation of 2,4-diamino-6-hydroxypyrimidine 6 with 5a-d afforded the 6-substituted pyrrolo[2,3-d]pyrimidines 7a-d. Hydrolysis and subsequent coupling with diethyl l-glutamate and saponification afforded target compounds 3a-d. Compounds 3b-d showed selective cellular uptake via FRα and -β, associated with high affinity binding and inhibition of de novo purine nucleotide biosynthesis via GARFTase, resulting in potent inhibition against FR-expressing Chinese hamster cells and human KB tumor cells in culture. Our studies establish, for the first time, that a side chain benzoyl group is not essential for tumor-selective drug uptake by FRα.
Growth inhibition of Chinese hamster D4 cells after 96 hrs by CellTiter-blue assay
|
Cricetulus griseus
|
2.6
nM
|
|
Journal : J. Med. Chem.
Title : Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
Year : 2013
Volume : 56
Issue : 21
First Page : 8684
Last Page : 8695
Authors : Wang Y, Cherian C, Orr S, Mitchell-Ryan S, Hou Z, Raghavan S, Matherly LH, Gangjee A.
Abstract : A new series of 6-substituted straight side chain pyrrolo[2,3-d]pyrimidines 3a-d with varying chain lengths (n = 5-8) was designed and synthesized as part of our program to provide targeted antitumor agents with folate receptor (FR) cellular uptake specificity and glycinamide ribonucleotide formyltransferase (GARFTase) inhibition. Carboxylic acids 4a-d were converted to the acid chlorides and reacted with diazomethane, followed by 48% HBr to generate the α-bromomethylketones 5a-d. Condensation of 2,4-diamino-6-hydroxypyrimidine 6 with 5a-d afforded the 6-substituted pyrrolo[2,3-d]pyrimidines 7a-d. Hydrolysis and subsequent coupling with diethyl l-glutamate and saponification afforded target compounds 3a-d. Compounds 3b-d showed selective cellular uptake via FRα and -β, associated with high affinity binding and inhibition of de novo purine nucleotide biosynthesis via GARFTase, resulting in potent inhibition against FR-expressing Chinese hamster cells and human KB tumor cells in culture. Our studies establish, for the first time, that a side chain benzoyl group is not essential for tumor-selective drug uptake by FRα.
Growth inhibition of Chinese hamster RT16 cells after 96 hrs by CellTiter-blue assay in presence of folic acid
|
Cricetulus griseus
|
188.0
nM
|
|
Journal : J. Med. Chem.
Title : Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
Year : 2013
Volume : 56
Issue : 21
First Page : 8684
Last Page : 8695
Authors : Wang Y, Cherian C, Orr S, Mitchell-Ryan S, Hou Z, Raghavan S, Matherly LH, Gangjee A.
Abstract : A new series of 6-substituted straight side chain pyrrolo[2,3-d]pyrimidines 3a-d with varying chain lengths (n = 5-8) was designed and synthesized as part of our program to provide targeted antitumor agents with folate receptor (FR) cellular uptake specificity and glycinamide ribonucleotide formyltransferase (GARFTase) inhibition. Carboxylic acids 4a-d were converted to the acid chlorides and reacted with diazomethane, followed by 48% HBr to generate the α-bromomethylketones 5a-d. Condensation of 2,4-diamino-6-hydroxypyrimidine 6 with 5a-d afforded the 6-substituted pyrrolo[2,3-d]pyrimidines 7a-d. Hydrolysis and subsequent coupling with diethyl l-glutamate and saponification afforded target compounds 3a-d. Compounds 3b-d showed selective cellular uptake via FRα and -β, associated with high affinity binding and inhibition of de novo purine nucleotide biosynthesis via GARFTase, resulting in potent inhibition against FR-expressing Chinese hamster cells and human KB tumor cells in culture. Our studies establish, for the first time, that a side chain benzoyl group is not essential for tumor-selective drug uptake by FRα.
Growth inhibition of Chinese hamster RT16 cells after 96 hrs by CellTiter-blue assay
|
Cricetulus griseus
|
12.0
nM
|
|
Journal : J. Med. Chem.
Title : Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
Year : 2013
Volume : 56
Issue : 21
First Page : 8684
Last Page : 8695
Authors : Wang Y, Cherian C, Orr S, Mitchell-Ryan S, Hou Z, Raghavan S, Matherly LH, Gangjee A.
Abstract : A new series of 6-substituted straight side chain pyrrolo[2,3-d]pyrimidines 3a-d with varying chain lengths (n = 5-8) was designed and synthesized as part of our program to provide targeted antitumor agents with folate receptor (FR) cellular uptake specificity and glycinamide ribonucleotide formyltransferase (GARFTase) inhibition. Carboxylic acids 4a-d were converted to the acid chlorides and reacted with diazomethane, followed by 48% HBr to generate the α-bromomethylketones 5a-d. Condensation of 2,4-diamino-6-hydroxypyrimidine 6 with 5a-d afforded the 6-substituted pyrrolo[2,3-d]pyrimidines 7a-d. Hydrolysis and subsequent coupling with diethyl l-glutamate and saponification afforded target compounds 3a-d. Compounds 3b-d showed selective cellular uptake via FRα and -β, associated with high affinity binding and inhibition of de novo purine nucleotide biosynthesis via GARFTase, resulting in potent inhibition against FR-expressing Chinese hamster cells and human KB tumor cells in culture. Our studies establish, for the first time, that a side chain benzoyl group is not essential for tumor-selective drug uptake by FRα.
Growth inhibition of Chinese hamster PC43-10 cells after 96 hrs by CellTiter-blue assay
|
Cricetulus griseus
|
12.0
nM
|
|
Journal : J. Med. Chem.
Title : Tumor-targeting with novel non-benzoyl 6-substituted straight chain pyrrolo[2,3-d]pyrimidine antifolates via cellular uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis.
Year : 2013
Volume : 56
Issue : 21
First Page : 8684
Last Page : 8695
Authors : Wang Y, Cherian C, Orr S, Mitchell-Ryan S, Hou Z, Raghavan S, Matherly LH, Gangjee A.
Abstract : A new series of 6-substituted straight side chain pyrrolo[2,3-d]pyrimidines 3a-d with varying chain lengths (n = 5-8) was designed and synthesized as part of our program to provide targeted antitumor agents with folate receptor (FR) cellular uptake specificity and glycinamide ribonucleotide formyltransferase (GARFTase) inhibition. Carboxylic acids 4a-d were converted to the acid chlorides and reacted with diazomethane, followed by 48% HBr to generate the α-bromomethylketones 5a-d. Condensation of 2,4-diamino-6-hydroxypyrimidine 6 with 5a-d afforded the 6-substituted pyrrolo[2,3-d]pyrimidines 7a-d. Hydrolysis and subsequent coupling with diethyl l-glutamate and saponification afforded target compounds 3a-d. Compounds 3b-d showed selective cellular uptake via FRα and -β, associated with high affinity binding and inhibition of de novo purine nucleotide biosynthesis via GARFTase, resulting in potent inhibition against FR-expressing Chinese hamster cells and human KB tumor cells in culture. Our studies establish, for the first time, that a side chain benzoyl group is not essential for tumor-selective drug uptake by FRα.
Cytotoxicity against chinese hamster R2 cells expressing human PCFT4 after 96 hrs by CellTitre-Blue fluorescence assay
|
Cricetulus griseus
|
38.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of 5-substituted pyrrolo[2,3-d]pyrimidine antifolates as dual-acting inhibitors of glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis: implications of inhibiting 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase to ampk activation and antitumor activity.
Year : 2013
Volume : 56
Issue : 24
First Page : 10016
Last Page : 10032
Authors : Mitchell-Ryan S, Wang Y, Raghavan S, Ravindra MP, Hales E, Orr S, Cherian C, Hou Z, Matherly LH, Gangjee A.
Abstract : We synthesized 5-substituted pyrrolo[2,3-d]pyrimidine antifolates (compounds 5-10) with one-to-six bridge carbons and a benozyl ring in the side chain as antitumor agents. Compound 8 with a 4-carbon bridge was the most active analogue and potently inhibited proliferation of folate receptor (FR) α-expressing Chinese hamster ovary and KB human tumor cells. Growth inhibition was reversed completely or in part by excess folic acid, indicating that FRα is involved in cellular uptake, and resulted in S-phase accumulation and apoptosis. Antiproliferative effects of compound 8 toward KB cells were protected by excess adenosine but not thymidine, establishing de novo purine nucleotide biosynthesis as the targeted pathway. However, 5-aminoimidazole-4-carboxamide (AICA) protection was incomplete, suggesting inhibition of both AICA ribonucleotide formyltransferase (AICARFTase) and glycinamide ribonucleotide formyltransferase (GARFTase). Inhibition of GARFTase and AICARFTase by compound 8 was confirmed by cellular metabolic assays and resulted in ATP pool depletion. To our knowledge, this is the first example of an antifolate that acts as a dual inhibitor of GARFTase and AICARFTase as its principal mechanism of action.
Inhibition of GARFTase (unknown origin)
|
Homo sapiens
|
6.0
nM
|
|
Journal : Eur. J. Med. Chem.
Title : Design, synthesis and biological evaluation of 6-substituted pyrrolo[2,3-d]pyrimidines as dual inhibitors of TS and AICARFTase and as potential antitumor agents.
Year : 2016
Volume : 115
First Page : 245
Last Page : 256
Authors : Liu Y, Li M, Zhang H, Yuan J, Zhang C, Zhang K, Guo H, Zhao L, Du Y, Wang L, Ren L.
Abstract : A new series of 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines, with an isosteric replacement of the side chain amide moiety to a sulfur atom, were designed and synthesized as multitargeted antifolates as well as potential antitumor agents. Starting from previously synthesized 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidin-6-yl-acetic acid, a reduction by lithium triethylborohydride and successive mesylation afforded the key mesylate. Nucleophilic substitution by mercaptoacetic or mercaptopropionic acid methyl esters, followed by hydrolysis and condensation with pyridinyl-methylamines provided the nonclassical compounds 1-6, whereas condensation with glutamic acid diethyl ester hydrochloride and saponification afforded the classical analogs 7-8. All target compounds exhibited inhibitory activities toward KB, SW620 and A549 tumor cell lines. The most potent compounds of this series, 7 and 8, are better inhibitors against A549 cells than methotrexate (MTX) and pemetrexed (PMX). Nucleoside protection assays establish compound 8 a dual inhibitor of thymidylate synthase (TS) and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFTase) targeting both de novo thymidylate and purine nucleotide biosynthesis, which is further verified by the molecular modeling studies. Analogous to PMX, target compound 8 alternates the cell cycle of SW620 cells with S-phase accumulation and induces apoptosis, leading to cell death.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of Caco-2 cells at 10 uM after 48 hours by high content imaging
|
Homo sapiens
|
16.41
%
|
|
Title : Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection
Year : 2020
Authors : Bernhard Ellinger, Denisa Bojkova, Andrea Zaliani, Jindrich Cinatl, Carsten Claussen, Sandra Westhaus, Jeanette Reinshagen, Maria Kuzikov, Markus Wolf, Gerd Geisslinger, Philip Gribbon, Sandra Ciesek
Abstract : To identify possible candidates for progression towards clinical studies against SARS-CoV-2, we screened a well-defined collection of 5632 compounds including 3488 compounds which have undergone clinical investigations (marketed drugs, phases 1 -3, and withdrawn) across 600 indications. Compounds were screened for their inhibition of viral induced cytotoxicity using the human epithelial colorectal adenocarcinoma cell line Caco-2 and a SARS-CoV-2 isolate. The primary screen of 5632 compounds gave 271 hits. A total of 64 compounds with IC50 <20 µM were identified, including 19 compounds with IC50 < 1 µM. Of this confirmed hit population, 90% have not yet been previously reported as active against SARS-CoV-2 in-vitro cell assays. Some 37 of the actives are launched drugs, 19 are in phases 1-3 and 10 pre-clinical. Several inhibitors were associated with modulation of host pathways including kinase signaling P53 activation, ubiquitin pathways and PDE activity modulation, with long chain acyl transferases were effective viral inhibitors.
Cytotoxicity in RFC-null Chinese hamster R2 cells assessed as reduction in cell viability measured after 96 hrs by Cell-Titer Blue fluorescence analysis
|
Cricetulus griseus
|
12.0
nM
|
|
Journal : J Med Chem
Title : Tumor Targeting with Novel 6-Substituted Pyrrolo [2,3-d] Pyrimidine Antifolates with Heteroatom Bridge Substitutions via Cellular Uptake by Folate Receptor α and the Proton-Coupled Folate Transporter and Inhibition of de Novo Purine Nucleotide Biosynthesis.
Year : 2016
Volume : 59
Issue : 17
First Page : 7856
Last Page : 7876
Authors : Golani LK, Wallace-Povirk A, Deis SM, Wong J, Ke J, Gu X, Raghavan S, Wilson MR, Li X, Polin L, de Waal PW, White K, Kushner J, O'Connor C, Hou Z, Xu HE, Melcher K, Dann CE, Matherly LH, Gangjee A.
Abstract : Targeted antifolates with heteroatom replacements of the carbon vicinal to the phenyl ring in 1 by N (4), O (8), or S (9), or with N-substituted formyl (5), acetyl (6), or trifluoroacetyl (7) moieties, were synthesized and tested for selective cellular uptake by folate receptor (FR) α and β or the proton-coupled folate transporter. Results show increased in vitro antiproliferative activity toward engineered Chinese hamster ovary cells expressing FRs by 4-9 over the CH2 analogue 1. Compounds 4-9 inhibited de novo purine biosynthesis and glycinamide ribonucleotide formyltransferase (GARFTase). X-ray crystal structures for 4 with FRα and GARFTase showed that the bound conformations of 4 required flexibility for attachment to both FRα and GARFTase. In mice bearing IGROV1 ovarian tumor xenografts, 4 was highly efficacious. Our results establish that heteroatom substitutions in the 3-atom bridge region of 6-substituted pyrrolo[2,3-d]pyrimidines related to 1 provide targeted antifolates that warrant further evaluation as anticancer agents.
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
2.109
%
|
|
Title : Identification of inhibitors of SARS-Cov2 M-Pro enzymatic activity using a small molecule repurposing screen
Year : 2020
Authors : Maria Kuzikov, Elisa Costanzi, Jeanette Reinshagen, Francesca Esposito, Laura Vangeel, Markus Wolf, Bernhard Ellinger, Carsten Claussen, Gerd Geisslinger, Angela Corona, Daniela Iaconis, Carmine Talarico, Candida Manelfi, Rolando Cannalire, Giulia Rossetti, Jonas Gossen, Simone Albani, Francesco Musiani, Katja Herzog, Yang Ye, Barbara Giabbai, Nicola Demitri, Dirk Jochmans, Steven De Jonghe, Jasper Rymenants, Vincenzo Summa, Enzo Tramontano, Andrea R. Beccari, Pieter Leyssen, Paola Storici, Johan Neyts, Philip Gribbon, and Andrea Zaliani
Abstract : Compound repurposing is an important strategy being pursued in the identification of effective treatment against the SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (M-Pro), also termed 3CL-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyprotein into 11 non-structural proteins. We report the results of a screening campaign involving ca 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and chemicals regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, but we have also identified 68 compounds with IC50 lower than 1 uM and 127 compounds with IC50 lower than 5 uM. Profiling showed 67% of confirmed hits were selective (> 5 fold) against other Cys- and Ser- proteases (Chymotrypsin and Cathepsin-L) and MERS 3CL-Pro. Selected compounds were also analysed in their binding characteristics.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
0.33
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
0.33
%
|
|
Title : Cytopathic SARS-Cov2 screening on VERO-E6 cells in a large repurposing effort
Year : 2020
Authors : Andrea Zaliani, Laura Vangeel, Jeanette Reinshagen, Daniela Iaconis, Maria Kuzikov, Oliver Keminer, Markus Wolf, Bernhard Ellinger, Francesca Esposito, Angela Corona, Enzo Tramontano, Candida Manelfi, Katja Herzog, Dirk Jochmans, Steven De Jonghe, Winston Chiu, Thibault Francken, Joost Schepers, Caroline Collard, Kayvan Abbasi, Carsten Claussen , Vincenzo Summa, Andrea R. Beccari, Johan Neyts, Philip Gribbon and Pieter Leyssen
Abstract : Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.