PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: MAP4K4
|
None
|
50.12
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: MST1R
|
None
|
10.0
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: CSF1R
|
None
|
3.162
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: MAP2K2
|
None
|
125.89
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: IKBKE
|
None
|
25.12
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: AXL
|
None
|
1.585
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: LTK
|
None
|
39.81
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: FRK
|
None
|
1.995
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: STK3
|
None
|
15.85
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: NTRK3
|
None
|
6.31
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: MATK
|
None
|
39.81
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: RPS6KA3
|
None
|
630.96
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: MAP2K1
|
None
|
100.0
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: ALK
|
None
|
199.53
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: PLK4
|
None
|
10.0
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: RET
|
None
|
2.512
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: PRKD2
|
None
|
501.19
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: RPS6KB1
|
None
|
100.0
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: SYK
|
None
|
50.12
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: TYRO3
|
None
|
63.1
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: STK17A
|
None
|
794.33
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: LCK
|
None
|
1.995
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: CHEK2
|
None
|
79.43
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: ACVR1
|
None
|
398.11
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: ROCK2
|
None
|
31.62
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: STK6
|
None
|
1.995
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: BTK
|
None
|
25.12
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: KIT
|
None
|
15.85
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: FGFR1
|
None
|
63.1
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: LYN
|
None
|
1.995
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: ITK
|
None
|
12.59
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: TAO1
|
None
|
630.96
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: ROS1
|
None
|
5.012
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: BLK
|
None
|
2.512
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: HIPK2
|
None
|
158.49
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: MARK3
|
None
|
316.23
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: NTRK1
|
None
|
63.1
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: INSR
|
None
|
100.0
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: ZAK
|
None
|
501.19
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: TYK2
|
None
|
794.33
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: EGFR
|
None
|
501.19
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: SRC
|
None
|
31.62
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: SRMS
|
None
|
25.12
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: MAP4K2
|
None
|
7.943
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: MET
|
None
|
3.981
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: ACK1
|
None
|
7.943
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: PDGFRB
|
None
|
0.5012
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: FLT3
|
None
|
15.85
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: ERBB2
|
None
|
501.19
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: ABL1
|
None
|
3.162
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: MKNK2
|
None
|
199.53
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: KDR
|
None
|
1.0
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: EPHA2
|
None
|
63.1
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: IGF1R
|
None
|
199.53
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: MINK
|
None
|
50.12
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: NEK4
|
None
|
199.53
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: PTK2
|
None
|
125.89
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: MELK
|
None
|
251.19
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: PDGFRA
|
None
|
0.7943
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: LRRK2
|
None
|
25.12
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: STK12
|
None
|
0.7943
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: FLT4
|
None
|
3.162
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: ROCK1
|
None
|
158.49
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: FER
|
None
|
50.12
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: FYN
|
None
|
63.1
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: HIPK4
|
None
|
19.95
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: PDPK1
|
None
|
794.33
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: NEK2
|
None
|
12.59
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: CDK8
|
None
|
158.49
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: FLT1
|
None
|
12.59
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: SLK
|
None
|
7.943
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: FGFR3
|
None
|
39.81
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: NTRK2
|
None
|
10.0
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: ERBB4
|
None
|
199.53
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: MARK2
|
None
|
251.19
nM
|
|
Title : PubChem BioAssay data set
Inhibition of KDR using 1 mM ATP by HTRF assay
|
None
|
2.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of Aurora B using 1 mM ATP by HTRF assay
|
None
|
7.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of CYP3A4 up to 10 uM
|
None
|
20.0
%
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of Aurora A by TR-FRET assay
|
None
|
12.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of Flt1 by TR-FRET assay
|
None
|
32.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of PDGFRbeta by TR-FRET assay
|
None
|
3.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of CSF1R by TR-FRET assay
|
None
|
16.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of LCK by TR-FRET assay
|
None
|
3.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of ABL by TR-FRET assay
|
None
|
12.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of RET by TR-FRET assay
|
None
|
7.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of FYN by TR-FRET assay
|
None
|
110.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of FGFR1 by TR-FRET assay
|
None
|
188.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of ALK by TR-FRET assay
|
None
|
363.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of ROCK1 by TR-FRET assay
|
None
|
456.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of IGF1R by TR-FRET assay
|
None
|
539.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of KDR by TR-FRET assay
|
None
|
4.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of Aurora B by TR-FRET assay
|
None
|
2.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Thienopyridine ureas as dual inhibitors of the VEGF and Aurora kinase families.
Year : 2012
Volume : 22
Issue : 9
First Page : 3208
Last Page : 3212
Authors : Curtin ML, Frey RR, Heyman HR, Soni NB, Marcotte PA, Pease LJ, Glaser KB, Magoc TJ, Tapang P, Albert DH, Osterling DJ, Olson AM, Bouska JJ, Guan Z, Preusser LC, Polakowski JS, Stewart KD, Tse C, Davidsen SK, Michaelides MR.
Abstract : In an effort to identify multi-targeted kinase inhibitors with a novel spectrum of kinase activity, a screen of Abbott proprietary KDR inhibitors against a broad panel of kinases was conducted and revealed a series of thienopyridine ureas with promising activity against the Aurora kinases. Modification of the diphenyl urea and C7 moiety of these compounds provided potent inhibitors with good pharmacokinetic profiles that were efficacious in mouse tumor models after oral dosing. Compound 2 (ABT-348) of this series is currently undergoing Phase I clinical trials in solid and hematological cancer populations.
Inhibition of CSF1R
|
Homo sapiens
|
3.162
nM
|
|
Journal : ACS Med. Chem. Lett.
Title : Targeted kinase selectivity from kinase profiling data.
Year : 2012
Volume : 3
Issue : 5
First Page : 383
Last Page : 386
Authors : Milletti F, Hermann JC.
Abstract : Kinase selectivity plays a major role in the design strategy of lead series and in the ultimate success of kinase drug discovery programs. Although profiling compounds against a large panel of protein kinases has become a standard part of modern drug discovery, data accumulated from these kinase panels may be underutilized for new kinase projects. We present a method that can be used to optimize the selectivity profile of a compound using historical kinase profiling data. This method proposes chemical transformations based on pairs of very similar compounds, which are both active against a desired target kinase and differ in activity against another kinase. We show that these transformations are transferable across scaffolds, thus making this tool valuable to exploit kinase profiling data for unrelated series of compounds.
Inhibition of PDGFRA
|
Homo sapiens
|
0.7943
nM
|
|
Journal : ACS Med. Chem. Lett.
Title : Targeted kinase selectivity from kinase profiling data.
Year : 2012
Volume : 3
Issue : 5
First Page : 383
Last Page : 386
Authors : Milletti F, Hermann JC.
Abstract : Kinase selectivity plays a major role in the design strategy of lead series and in the ultimate success of kinase drug discovery programs. Although profiling compounds against a large panel of protein kinases has become a standard part of modern drug discovery, data accumulated from these kinase panels may be underutilized for new kinase projects. We present a method that can be used to optimize the selectivity profile of a compound using historical kinase profiling data. This method proposes chemical transformations based on pairs of very similar compounds, which are both active against a desired target kinase and differ in activity against another kinase. We show that these transformations are transferable across scaffolds, thus making this tool valuable to exploit kinase profiling data for unrelated series of compounds.
Inhibition of KDR by HTRF analysis in presence of 1 mM ATP
|
Homo sapiens
|
2.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Pyrazole diaminopyrimidines as dual inhibitors of KDR and Aurora B kinases.
Year : 2012
Volume : 22
Issue : 14
First Page : 4750
Last Page : 4755
Authors : Curtin ML, Heyman HR, Frey RR, Marcotte PA, Glaser KB, Jankowski JR, Magoc TJ, Albert DH, Olson AM, Reuter DR, Bouska JJ, Montgomery DA, Palma JP, Donawho CK, Stewart KD, Tse C, Michaelides MR.
Abstract : In an effort to identify kinase inhibitors with dual KDR/Aurora B activity and improved aqueous solubility compared to the Abbott dual inhibitor ABT-348, a series of novel pyrazole pyrimidines structurally related to kinase inhibitor AS703569 were prepared. SAR work provided analogs with significant cellular activity, measureable aqueous solubility and moderate antitumor activity in a mouse tumor model after weekly ip dosing. Unfortunately these compounds were pan-kinase inhibitors that suffered from narrow therapeutic indices which prohibited their use as antitumor agents.
Inhibition of Aurora B kinase by HTRF analysis in presence of 1 mM ATP
|
Homo sapiens
|
7.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Pyrazole diaminopyrimidines as dual inhibitors of KDR and Aurora B kinases.
Year : 2012
Volume : 22
Issue : 14
First Page : 4750
Last Page : 4755
Authors : Curtin ML, Heyman HR, Frey RR, Marcotte PA, Glaser KB, Jankowski JR, Magoc TJ, Albert DH, Olson AM, Reuter DR, Bouska JJ, Montgomery DA, Palma JP, Donawho CK, Stewart KD, Tse C, Michaelides MR.
Abstract : In an effort to identify kinase inhibitors with dual KDR/Aurora B activity and improved aqueous solubility compared to the Abbott dual inhibitor ABT-348, a series of novel pyrazole pyrimidines structurally related to kinase inhibitor AS703569 were prepared. SAR work provided analogs with significant cellular activity, measureable aqueous solubility and moderate antitumor activity in a mouse tumor model after weekly ip dosing. Unfortunately these compounds were pan-kinase inhibitors that suffered from narrow therapeutic indices which prohibited their use as antitumor agents.
Inhibition of human KDR autophosphorylation expressed in mouse NIH/3T3 cells
|
Homo sapiens
|
3.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Pyrazole diaminopyrimidines as dual inhibitors of KDR and Aurora B kinases.
Year : 2012
Volume : 22
Issue : 14
First Page : 4750
Last Page : 4755
Authors : Curtin ML, Heyman HR, Frey RR, Marcotte PA, Glaser KB, Jankowski JR, Magoc TJ, Albert DH, Olson AM, Reuter DR, Bouska JJ, Montgomery DA, Palma JP, Donawho CK, Stewart KD, Tse C, Michaelides MR.
Abstract : In an effort to identify kinase inhibitors with dual KDR/Aurora B activity and improved aqueous solubility compared to the Abbott dual inhibitor ABT-348, a series of novel pyrazole pyrimidines structurally related to kinase inhibitor AS703569 were prepared. SAR work provided analogs with significant cellular activity, measureable aqueous solubility and moderate antitumor activity in a mouse tumor model after weekly ip dosing. Unfortunately these compounds were pan-kinase inhibitors that suffered from narrow therapeutic indices which prohibited their use as antitumor agents.
Enzyme Inhibtion Assay: To determine Aurora B activity of representative compounds of the invention, Active Aurora B enzyme (recombinant residues 1-344) and INCENP (recombinant GST fusion protein (Upstate)) were incubated in wells of a 384 well plate with biotinylted histone H3 peptide residues 1-21 (Upstate), 1 mM ATP, and various concentrations of inhibitors in a HEPES buffer, pH 7.4 containing MgCl2, sodium othrovanadate, and Triton X-100. After 1 hour, the reaction was stopped with EDTA and anti-phospho-histone H3 Europium Cryptate (Cis-Bio) and SA-APC (Phycolink, Prozyme) were added to detect the phosphopeptide. The amount of phosphorylation was determined by the time-resolved fluorescence ratio of signals at 665 nm and 615 nm.
|
Homo sapiens
|
6.73
nM
|
|
Enzyme Inhibtion Assay: To determine Aurora B activity of representative compounds of the invention, Active Aurora B enzyme (recombinant residues 1-344) and INCENP (recombinant GST fusion protein (Upstate)) were incubated in wells of a 384 well plate with biotinylted histone H3 peptide residues 1-21 (Upstate), 1 mM ATP, and various concentrations of inhibitors in a HEPES buffer, pH 7.4 containing MgCl2, sodium othrovanadate, and Triton X-100. After 1 hour, the reaction was stopped with EDTA and anti-phospho-histone H3 Europium Cryptate (Cis-Bio) and SA-APC (Phycolink, Prozyme) were added to detect the phosphopeptide. The amount of phosphorylation was determined by the time-resolved fluorescence ratio of signals at 665 nm and 615 nm.
|
Homo sapiens
|
7.87
nM
|
|
Title : Thieno[3,2-C]pyridine kinase inhibitors with improved CYP safety profile
Year : 2014
Enzyme Inhibtion Assay: To determine Aurora A and C activity of representative compounds of the invention, Active Aurora A or C enzyme was incubated in wells of a 384 well plate with biotinylated STK substrate-2 (Upstate), 1 mM ATP, and various concentrations of inhibitors in a Hepes buffer, pH 7.4 containing MgCl2, sodium othrovanadate, and Triton X-100. After 1 hour, the reaction was stopped with EDTA and anti-phospho-STK antibody Europium Cryptate (Upstate) and SA-XL665 (Upstate) were added to detect the phosphopeptide. The amount of phosphorylation was determined by the time-resolved fluorescence ratio of signals at 665 nm and 615 nm.
|
Homo sapiens
|
675.42
nM
|
|
Title : Thieno[3,2-C]pyridine kinase inhibitors with improved CYP safety profile
Year : 2014
Homogenous Time-Resolved Fluorescence Assay (HTRF): To determine the activity of the various kinases, a homogenous time-resolved fluorescence (HTRF) in vitro kinase assay was used. (Mathis, G., HTRF(R) Technology. J Biomol Screen, 1999. 4(6): p. 309-314; Alfred J. Kolb, Paul V. Kaplita, David J. Hayes, Young-Whan Park, Christine Pernell, John S. Major and Gerard Mathis, Drug Discovery Today, 1998, 3, 333-342.). For example for KDR, cKIT, FLT1, CSF1R and FTL3, purified enzyme was mixed with 0.5 μM N-biotinylated substrate (Biotin-Ahx-AEEEYFFLA-amide (SEQ. ID. 1)), various concentrations of inhibitor in reaction buffer (50 mM HEPES, pH 7.1, 10 mM MgCl2, 2 mM MnCl2, 0.1% BSA and 1 mM DTT, 40 μL final volume), ATP (1 mM final conc.) in a black 384-well plate. After 60 minutes incubation at room temperature, the reaction was quenched by addition of a buffered EDTA solution.
|
Homo sapiens
|
2.65
nM
|
|
Homogenous Time-Resolved Fluorescence Assay (HTRF): To determine the activity of the various kinases, a homogenous time-resolved fluorescence (HTRF) in vitro kinase assay was used. (Mathis, G., HTRF(R) Technology. J Biomol Screen, 1999. 4(6): p. 309-314; Alfred J. Kolb, Paul V. Kaplita, David J. Hayes, Young-Whan Park, Christine Pernell, John S. Major and Gerard Mathis, Drug Discovery Today, 1998, 3, 333-342.). For example for KDR, cKIT, FLT1, CSF1R and FTL3, purified enzyme was mixed with 0.5 μM N-biotinylated substrate (Biotin-Ahx-AEEEYFFLA-amide (SEQ. ID. 1)), various concentrations of inhibitor in reaction buffer (50 mM HEPES, pH 7.1, 10 mM MgCl2, 2 mM MnCl2, 0.1% BSA and 1 mM DTT, 40 μL final volume), ATP (1 mM final conc.) in a black 384-well plate. After 60 minutes incubation at room temperature, the reaction was quenched by addition of a buffered EDTA solution.
|
Homo sapiens
|
1.59
nM
|
|
Title : Thieno[3,2-C]pyridine kinase inhibitors with improved CYP safety profile
Year : 2014
Homogenous Time-Resolved Fluorescence Assay (HTRF): To determine the activity of the various kinases, a homogenous time-resolved fluorescence (HTRF) in vitro kinase assay was used. (Mathis, G., HTRF(R) Technology. J Biomol Screen, 1999. 4(6): p. 309-314; Alfred J. Kolb, Paul V. Kaplita, David J. Hayes, Young-Whan Park, Christine Pernell, John S. Major and Gerard Mathis, Drug Discovery Today, 1998, 3, 333-342.). For example for KDR, cKIT, FLT1, CSF1R and FTL3, purified enzyme was mixed with 0.5 μM N-biotinylated substrate (Biotin-Ahx-AEEEYFFLA-amide (SEQ. ID. 1)), various concentrations of inhibitor in reaction buffer (50 mM HEPES, pH 7.1, 10 mM MgCl2, 2 mM MnCl2, 0.1% BSA and 1 mM DTT, 40 μL final volume), ATP (1 mM final conc.) in a black 384-well plate. After 60 minutes incubation at room temperature, the reaction was quenched by addition of a buffered EDTA solution.
|
Homo sapiens
|
19.53
nM
|
|
Homogenous Time-Resolved Fluorescence Assay (HTRF): To determine the activity of the various kinases, a homogenous time-resolved fluorescence (HTRF) in vitro kinase assay was used. (Mathis, G., HTRF(R) Technology. J Biomol Screen, 1999. 4(6): p. 309-314; Alfred J. Kolb, Paul V. Kaplita, David J. Hayes, Young-Whan Park, Christine Pernell, John S. Major and Gerard Mathis, Drug Discovery Today, 1998, 3, 333-342.). For example for KDR, cKIT, FLT1, CSF1R and FTL3, purified enzyme was mixed with 0.5 μM N-biotinylated substrate (Biotin-Ahx-AEEEYFFLA-amide (SEQ. ID. 1)), various concentrations of inhibitor in reaction buffer (50 mM HEPES, pH 7.1, 10 mM MgCl2, 2 mM MnCl2, 0.1% BSA and 1 mM DTT, 40 μL final volume), ATP (1 mM final conc.) in a black 384-well plate. After 60 minutes incubation at room temperature, the reaction was quenched by addition of a buffered EDTA solution.
|
Homo sapiens
|
27.27
nM
|
|
Title : Thieno[3,2-C]pyridine kinase inhibitors with improved CYP safety profile
Year : 2014
Homogenous Time-Resolved Fluorescence Assay (HTRF): To determine the activity of the various kinases, a homogenous time-resolved fluorescence (HTRF) in vitro kinase assay was used. (Mathis, G., HTRF(R) Technology. J Biomol Screen, 1999. 4(6): p. 309-314; Alfred J. Kolb, Paul V. Kaplita, David J. Hayes, Young-Whan Park, Christine Pernell, John S. Major and Gerard Mathis, Drug Discovery Today, 1998, 3, 333-342.). For example for KDR, cKIT, FLT1, CSF1R and FTL3, purified enzyme was mixed with 0.5 μM N-biotinylated substrate (Biotin-Ahx-AEEEYFFLA-amide (SEQ. ID. 1)), various concentrations of inhibitor in reaction buffer (50 mM HEPES, pH 7.1, 10 mM MgCl2, 2 mM MnCl2, 0.1% BSA and 1 mM DTT, 40 μL final volume), ATP (1 mM final conc.) in a black 384-well plate. After 60 minutes incubation at room temperature, the reaction was quenched by addition of a buffered EDTA solution.
|
Homo sapiens
|
2.1
nM
|
|
Homogenous Time-Resolved Fluorescence Assay (HTRF): To determine the activity of the various kinases, a homogenous time-resolved fluorescence (HTRF) in vitro kinase assay was used. (Mathis, G., HTRF(R) Technology. J Biomol Screen, 1999. 4(6): p. 309-314; Alfred J. Kolb, Paul V. Kaplita, David J. Hayes, Young-Whan Park, Christine Pernell, John S. Major and Gerard Mathis, Drug Discovery Today, 1998, 3, 333-342.). For example for KDR, cKIT, FLT1, CSF1R and FTL3, purified enzyme was mixed with 0.5 μM N-biotinylated substrate (Biotin-Ahx-AEEEYFFLA-amide (SEQ. ID. 1)), various concentrations of inhibitor in reaction buffer (50 mM HEPES, pH 7.1, 10 mM MgCl2, 2 mM MnCl2, 0.1% BSA and 1 mM DTT, 40 μL final volume), ATP (1 mM final conc.) in a black 384-well plate. After 60 minutes incubation at room temperature, the reaction was quenched by addition of a buffered EDTA solution.
|
Homo sapiens
|
1.25
nM
|
|
Title : Thieno[3,2-C]pyridine kinase inhibitors with improved CYP safety profile
Year : 2014
Homogenous Time-Resolved Fluorescence Assay (HTRF): To determine the activity of the various kinases, a homogenous time-resolved fluorescence (HTRF) in vitro kinase assay was used. (Mathis, G., HTRF(R) Technology. J Biomol Screen, 1999. 4(6): p. 309-314; Alfred J. Kolb, Paul V. Kaplita, David J. Hayes, Young-Whan Park, Christine Pernell, John S. Major and Gerard Mathis, Drug Discovery Today, 1998, 3, 333-342.). For example for KDR, cKIT, FLT1, CSF1R and FTL3, purified enzyme was mixed with 0.5 μM N-biotinylated substrate (Biotin-Ahx-AEEEYFFLA-amide (SEQ. ID. 1)), various concentrations of inhibitor in reaction buffer (50 mM HEPES, pH 7.1, 10 mM MgCl2, 2 mM MnCl2, 0.1% BSA and 1 mM DTT, 40 μL final volume), ATP (1 mM final conc.) in a black 384-well plate. After 60 minutes incubation at room temperature, the reaction was quenched by addition of a buffered EDTA solution.
|
Homo sapiens
|
1.13
nM
|
|
Homogenous Time-Resolved Fluorescence Assay (HTRF): To determine the activity of the various kinases, a homogenous time-resolved fluorescence (HTRF) in vitro kinase assay was used. (Mathis, G., HTRF(R) Technology. J Biomol Screen, 1999. 4(6): p. 309-314; Alfred J. Kolb, Paul V. Kaplita, David J. Hayes, Young-Whan Park, Christine Pernell, John S. Major and Gerard Mathis, Drug Discovery Today, 1998, 3, 333-342.). For example for KDR, cKIT, FLT1, CSF1R and FTL3, purified enzyme was mixed with 0.5 μM N-biotinylated substrate (Biotin-Ahx-AEEEYFFLA-amide (SEQ. ID. 1)), various concentrations of inhibitor in reaction buffer (50 mM HEPES, pH 7.1, 10 mM MgCl2, 2 mM MnCl2, 0.1% BSA and 1 mM DTT, 40 μL final volume), ATP (1 mM final conc.) in a black 384-well plate. After 60 minutes incubation at room temperature, the reaction was quenched by addition of a buffered EDTA solution.
|
Homo sapiens
|
1.3
nM
|
|
Title : Thieno[3,2-C]pyridine kinase inhibitors with improved CYP safety profile
Year : 2014
Homogenous Time-Resolved Fluorescence Assay (HTRF): To determine the activity of the various kinases, a homogenous time-resolved fluorescence (HTRF) in vitro kinase assay was used. (Mathis, G., HTRF(R) Technology. J Biomol Screen, 1999. 4(6): p. 309-314; Alfred J. Kolb, Paul V. Kaplita, David J. Hayes, Young-Whan Park, Christine Pernell, John S. Major and Gerard Mathis, Drug Discovery Today, 1998, 3, 333-342.). For example for KDR, cKIT, FLT1, CSF1R and FTL3, purified enzyme was mixed with 0.5 μM N-biotinylated substrate (Biotin-Ahx-AEEEYFFLA-amide (SEQ. ID. 1)), various concentrations of inhibitor in reaction buffer (50 mM HEPES, pH 7.1, 10 mM MgCl2, 2 mM MnCl2, 0.1% BSA and 1 mM DTT, 40 μL final volume), ATP (1 mM final conc.) in a black 384-well plate. After 60 minutes incubation at room temperature, the reaction was quenched by addition of a buffered EDTA solution.
|
Homo sapiens
|
3.42
nM
|
|
Homogenous Time-Resolved Fluorescence Assay (HTRF): To determine the activity of the various kinases, a homogenous time-resolved fluorescence (HTRF) in vitro kinase assay was used. (Mathis, G., HTRF(R) Technology. J Biomol Screen, 1999. 4(6): p. 309-314; Alfred J. Kolb, Paul V. Kaplita, David J. Hayes, Young-Whan Park, Christine Pernell, John S. Major and Gerard Mathis, Drug Discovery Today, 1998, 3, 333-342.). For example for KDR, cKIT, FLT1, CSF1R and FTL3, purified enzyme was mixed with 0.5 μM N-biotinylated substrate (Biotin-Ahx-AEEEYFFLA-amide (SEQ. ID. 1)), various concentrations of inhibitor in reaction buffer (50 mM HEPES, pH 7.1, 10 mM MgCl2, 2 mM MnCl2, 0.1% BSA and 1 mM DTT, 40 μL final volume), ATP (1 mM final conc.) in a black 384-well plate. After 60 minutes incubation at room temperature, the reaction was quenched by addition of a buffered EDTA solution.
|
Homo sapiens
|
2.22
nM
|
|
Title : Thieno[3,2-C]pyridine kinase inhibitors with improved CYP safety profile
Year : 2014
Inhibition of AuroraA (unknown origin)
|
Homo sapiens
|
120.0
nM
|
|
Journal : Bioorg Med Chem Lett
Title : The synthesis and anti-tumour properties of novel 4-substituted phthalazinones as Aurora B kinase inhibitors.
Year : 2020
Volume : 30
Issue : 23.0
First Page : 127556
Last Page : 127556
Authors : Zhang XJ,Xu Y,Mou HX,Wang S,Hao SY,Chen SW
Abstract : A series of novel 4-substituted phthalazinones as Aurora B kinase inhibitors was synthesized and evaluated the anti-proliferative activities against A549, HCT116, MCF-7 and HepG2 cells. 1-(4-(2-((4-Oxo-3,4-dihydrophthalazin-1-yl)amino)ethyl) phenyl)-3-(3-(trifluoromethyl)phenyl)urea (17b) exhibited the most potent anti-proliferative activity against HCT116 cells with IC value of 4.35 ± 1.21 μM, as well as the moderate Aurora B inhibitory activity with the IC value of 142 nM. Furthermore, 17b inhibited the phosphorylation of Aurora B on Thr232, leading to cell cycle arrest in the G2/M phase by down-regulating the expression of CyclinB1 and Cdc2 proteins, and apoptosis by up-regulating the expression of BAD and Bax proteins in HCT116 cells. In addition, a docking study revealed that 17b could form key hydrogen bonds with Ala173, Glu171 and Glu177 in Aurora B. All the results reveal that 17b is worthy of further development as an Aurora B kinase inhibitor.
Inhibition of AuroraC (unknown origin)
|
Homo sapiens
|
7.0
nM
|
|
Journal : Bioorg Med Chem Lett
Title : The synthesis and anti-tumour properties of novel 4-substituted phthalazinones as Aurora B kinase inhibitors.
Year : 2020
Volume : 30
Issue : 23.0
First Page : 127556
Last Page : 127556
Authors : Zhang XJ,Xu Y,Mou HX,Wang S,Hao SY,Chen SW
Abstract : A series of novel 4-substituted phthalazinones as Aurora B kinase inhibitors was synthesized and evaluated the anti-proliferative activities against A549, HCT116, MCF-7 and HepG2 cells. 1-(4-(2-((4-Oxo-3,4-dihydrophthalazin-1-yl)amino)ethyl) phenyl)-3-(3-(trifluoromethyl)phenyl)urea (17b) exhibited the most potent anti-proliferative activity against HCT116 cells with IC value of 4.35 ± 1.21 μM, as well as the moderate Aurora B inhibitory activity with the IC value of 142 nM. Furthermore, 17b inhibited the phosphorylation of Aurora B on Thr232, leading to cell cycle arrest in the G2/M phase by down-regulating the expression of CyclinB1 and Cdc2 proteins, and apoptosis by up-regulating the expression of BAD and Bax proteins in HCT116 cells. In addition, a docking study revealed that 17b could form key hydrogen bonds with Ala173, Glu171 and Glu177 in Aurora B. All the results reveal that 17b is worthy of further development as an Aurora B kinase inhibitor.
Inhibition of AuroraB (unknown origin)
|
Homo sapiens
|
12.0
nM
|
|
Journal : Bioorg Med Chem Lett
Title : The synthesis and anti-tumour properties of novel 4-substituted phthalazinones as Aurora B kinase inhibitors.
Year : 2020
Volume : 30
Issue : 23.0
First Page : 127556
Last Page : 127556
Authors : Zhang XJ,Xu Y,Mou HX,Wang S,Hao SY,Chen SW
Abstract : A series of novel 4-substituted phthalazinones as Aurora B kinase inhibitors was synthesized and evaluated the anti-proliferative activities against A549, HCT116, MCF-7 and HepG2 cells. 1-(4-(2-((4-Oxo-3,4-dihydrophthalazin-1-yl)amino)ethyl) phenyl)-3-(3-(trifluoromethyl)phenyl)urea (17b) exhibited the most potent anti-proliferative activity against HCT116 cells with IC value of 4.35 ± 1.21 μM, as well as the moderate Aurora B inhibitory activity with the IC value of 142 nM. Furthermore, 17b inhibited the phosphorylation of Aurora B on Thr232, leading to cell cycle arrest in the G2/M phase by down-regulating the expression of CyclinB1 and Cdc2 proteins, and apoptosis by up-regulating the expression of BAD and Bax proteins in HCT116 cells. In addition, a docking study revealed that 17b could form key hydrogen bonds with Ala173, Glu171 and Glu177 in Aurora B. All the results reveal that 17b is worthy of further development as an Aurora B kinase inhibitor.