Cytotoxicity against human Glioma cells (HF2303) after 72 hrs by CelltiterGlo assay
|
Homo sapiens
|
0.7
nM
|
|
Journal : ACS Med. Chem. Lett.
Title : High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma.
Year : 2015
Volume : 6
Issue : 8
First Page : 948
Last Page : 952
Authors : Quartararo CE, Reznik E, deCarvalho AC, Mikkelsen T, Stockwell BR.
Abstract : Identifying drugs for the treatment of glioblastoma (GBM), a rapidly fatal disease, has been challenging. Most screening efforts have been conducted with immortalized cell lines grown with fetal bovine serum, which have little relevance to the genomic features found in GBM patients. Patient-derived neurosphere cultures, while being more physiologically relevant, are difficult to screen and therefore are only used to test a few drug candidates after initial screening efforts. Laminin has been used to generate two-dimensional cell lines from patient tumors, preserving the genomic signature and alleviating some screening hurdles. We present here the first side-by-side comparison of inhibitor sensitivity of laminin and neurosphere-grown patient-derived GBM cell lines and show that both of these culture methods result in the same pattern of inhibitor sensitivity. We used these screening methods to evaluate the dependencies of seven patient-derived cell models: three grown on laminin and four grown as neurospheres, against 56 agents in 17-point dose-response curves in 384-well format in triplicate. This allowed us to establish differential sensitivity of chemotherapeutic agents across the seven patient-derived models. We found that MEK inhibition caused patient-sample-specific growth inhibition and that bortezomib, an FDA-approved proteasome inhibitor, was potently lethal in all patient-derived models. Furthermore, the screening results led us to test the combination of the Bcl-2 inhibitor ABT-263, and the mTOR inhibitor AZD-8055, which we found to be synergistic in a subset of patient-derived GBM models. Thus, we have identified new candidate therapeutics and developed a high-throughput screening system using patient-derived GBM samples.
Cytotoxicity against human Glioma cells (HF2381) after 72 hrs by CelltiterGlo assay
|
Homo sapiens
|
0.7
nM
|
|
Journal : ACS Med. Chem. Lett.
Title : High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma.
Year : 2015
Volume : 6
Issue : 8
First Page : 948
Last Page : 952
Authors : Quartararo CE, Reznik E, deCarvalho AC, Mikkelsen T, Stockwell BR.
Abstract : Identifying drugs for the treatment of glioblastoma (GBM), a rapidly fatal disease, has been challenging. Most screening efforts have been conducted with immortalized cell lines grown with fetal bovine serum, which have little relevance to the genomic features found in GBM patients. Patient-derived neurosphere cultures, while being more physiologically relevant, are difficult to screen and therefore are only used to test a few drug candidates after initial screening efforts. Laminin has been used to generate two-dimensional cell lines from patient tumors, preserving the genomic signature and alleviating some screening hurdles. We present here the first side-by-side comparison of inhibitor sensitivity of laminin and neurosphere-grown patient-derived GBM cell lines and show that both of these culture methods result in the same pattern of inhibitor sensitivity. We used these screening methods to evaluate the dependencies of seven patient-derived cell models: three grown on laminin and four grown as neurospheres, against 56 agents in 17-point dose-response curves in 384-well format in triplicate. This allowed us to establish differential sensitivity of chemotherapeutic agents across the seven patient-derived models. We found that MEK inhibition caused patient-sample-specific growth inhibition and that bortezomib, an FDA-approved proteasome inhibitor, was potently lethal in all patient-derived models. Furthermore, the screening results led us to test the combination of the Bcl-2 inhibitor ABT-263, and the mTOR inhibitor AZD-8055, which we found to be synergistic in a subset of patient-derived GBM models. Thus, we have identified new candidate therapeutics and developed a high-throughput screening system using patient-derived GBM samples.
Cytotoxicity against human Glioma cells (HF2476) after 72 hrs by CelltiterGlo assay
|
Homo sapiens
|
0.7
nM
|
|
Journal : ACS Med. Chem. Lett.
Title : High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma.
Year : 2015
Volume : 6
Issue : 8
First Page : 948
Last Page : 952
Authors : Quartararo CE, Reznik E, deCarvalho AC, Mikkelsen T, Stockwell BR.
Abstract : Identifying drugs for the treatment of glioblastoma (GBM), a rapidly fatal disease, has been challenging. Most screening efforts have been conducted with immortalized cell lines grown with fetal bovine serum, which have little relevance to the genomic features found in GBM patients. Patient-derived neurosphere cultures, while being more physiologically relevant, are difficult to screen and therefore are only used to test a few drug candidates after initial screening efforts. Laminin has been used to generate two-dimensional cell lines from patient tumors, preserving the genomic signature and alleviating some screening hurdles. We present here the first side-by-side comparison of inhibitor sensitivity of laminin and neurosphere-grown patient-derived GBM cell lines and show that both of these culture methods result in the same pattern of inhibitor sensitivity. We used these screening methods to evaluate the dependencies of seven patient-derived cell models: three grown on laminin and four grown as neurospheres, against 56 agents in 17-point dose-response curves in 384-well format in triplicate. This allowed us to establish differential sensitivity of chemotherapeutic agents across the seven patient-derived models. We found that MEK inhibition caused patient-sample-specific growth inhibition and that bortezomib, an FDA-approved proteasome inhibitor, was potently lethal in all patient-derived models. Furthermore, the screening results led us to test the combination of the Bcl-2 inhibitor ABT-263, and the mTOR inhibitor AZD-8055, which we found to be synergistic in a subset of patient-derived GBM models. Thus, we have identified new candidate therapeutics and developed a high-throughput screening system using patient-derived GBM samples.
Cytotoxicity against human Glioma cells (HF2790) after 72 hrs by CelltiterGlo assay
|
Homo sapiens
|
0.7
nM
|
|
Journal : ACS Med. Chem. Lett.
Title : High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma.
Year : 2015
Volume : 6
Issue : 8
First Page : 948
Last Page : 952
Authors : Quartararo CE, Reznik E, deCarvalho AC, Mikkelsen T, Stockwell BR.
Abstract : Identifying drugs for the treatment of glioblastoma (GBM), a rapidly fatal disease, has been challenging. Most screening efforts have been conducted with immortalized cell lines grown with fetal bovine serum, which have little relevance to the genomic features found in GBM patients. Patient-derived neurosphere cultures, while being more physiologically relevant, are difficult to screen and therefore are only used to test a few drug candidates after initial screening efforts. Laminin has been used to generate two-dimensional cell lines from patient tumors, preserving the genomic signature and alleviating some screening hurdles. We present here the first side-by-side comparison of inhibitor sensitivity of laminin and neurosphere-grown patient-derived GBM cell lines and show that both of these culture methods result in the same pattern of inhibitor sensitivity. We used these screening methods to evaluate the dependencies of seven patient-derived cell models: three grown on laminin and four grown as neurospheres, against 56 agents in 17-point dose-response curves in 384-well format in triplicate. This allowed us to establish differential sensitivity of chemotherapeutic agents across the seven patient-derived models. We found that MEK inhibition caused patient-sample-specific growth inhibition and that bortezomib, an FDA-approved proteasome inhibitor, was potently lethal in all patient-derived models. Furthermore, the screening results led us to test the combination of the Bcl-2 inhibitor ABT-263, and the mTOR inhibitor AZD-8055, which we found to be synergistic in a subset of patient-derived GBM models. Thus, we have identified new candidate therapeutics and developed a high-throughput screening system using patient-derived GBM samples.
Cytotoxicity against human Glioma cells (HF2876) after 72 hrs by CelltiterGlo assay
|
Homo sapiens
|
0.7
nM
|
|
Journal : ACS Med. Chem. Lett.
Title : High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma.
Year : 2015
Volume : 6
Issue : 8
First Page : 948
Last Page : 952
Authors : Quartararo CE, Reznik E, deCarvalho AC, Mikkelsen T, Stockwell BR.
Abstract : Identifying drugs for the treatment of glioblastoma (GBM), a rapidly fatal disease, has been challenging. Most screening efforts have been conducted with immortalized cell lines grown with fetal bovine serum, which have little relevance to the genomic features found in GBM patients. Patient-derived neurosphere cultures, while being more physiologically relevant, are difficult to screen and therefore are only used to test a few drug candidates after initial screening efforts. Laminin has been used to generate two-dimensional cell lines from patient tumors, preserving the genomic signature and alleviating some screening hurdles. We present here the first side-by-side comparison of inhibitor sensitivity of laminin and neurosphere-grown patient-derived GBM cell lines and show that both of these culture methods result in the same pattern of inhibitor sensitivity. We used these screening methods to evaluate the dependencies of seven patient-derived cell models: three grown on laminin and four grown as neurospheres, against 56 agents in 17-point dose-response curves in 384-well format in triplicate. This allowed us to establish differential sensitivity of chemotherapeutic agents across the seven patient-derived models. We found that MEK inhibition caused patient-sample-specific growth inhibition and that bortezomib, an FDA-approved proteasome inhibitor, was potently lethal in all patient-derived models. Furthermore, the screening results led us to test the combination of the Bcl-2 inhibitor ABT-263, and the mTOR inhibitor AZD-8055, which we found to be synergistic in a subset of patient-derived GBM models. Thus, we have identified new candidate therapeutics and developed a high-throughput screening system using patient-derived GBM samples.
Cytotoxicity against human Glioma cells (HF2885) after 72 hrs by CelltiterGlo assay
|
Homo sapiens
|
0.7
nM
|
|
Journal : ACS Med. Chem. Lett.
Title : High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma.
Year : 2015
Volume : 6
Issue : 8
First Page : 948
Last Page : 952
Authors : Quartararo CE, Reznik E, deCarvalho AC, Mikkelsen T, Stockwell BR.
Abstract : Identifying drugs for the treatment of glioblastoma (GBM), a rapidly fatal disease, has been challenging. Most screening efforts have been conducted with immortalized cell lines grown with fetal bovine serum, which have little relevance to the genomic features found in GBM patients. Patient-derived neurosphere cultures, while being more physiologically relevant, are difficult to screen and therefore are only used to test a few drug candidates after initial screening efforts. Laminin has been used to generate two-dimensional cell lines from patient tumors, preserving the genomic signature and alleviating some screening hurdles. We present here the first side-by-side comparison of inhibitor sensitivity of laminin and neurosphere-grown patient-derived GBM cell lines and show that both of these culture methods result in the same pattern of inhibitor sensitivity. We used these screening methods to evaluate the dependencies of seven patient-derived cell models: three grown on laminin and four grown as neurospheres, against 56 agents in 17-point dose-response curves in 384-well format in triplicate. This allowed us to establish differential sensitivity of chemotherapeutic agents across the seven patient-derived models. We found that MEK inhibition caused patient-sample-specific growth inhibition and that bortezomib, an FDA-approved proteasome inhibitor, was potently lethal in all patient-derived models. Furthermore, the screening results led us to test the combination of the Bcl-2 inhibitor ABT-263, and the mTOR inhibitor AZD-8055, which we found to be synergistic in a subset of patient-derived GBM models. Thus, we have identified new candidate therapeutics and developed a high-throughput screening system using patient-derived GBM samples.
Cytotoxicity against human Glioma cells (HF3013) after 72 hrs by CelltiterGlo assay
|
Homo sapiens
|
0.7
nM
|
|
Journal : ACS Med. Chem. Lett.
Title : High-Throughput Screening of Patient-Derived Cultures Reveals Potential for Precision Medicine in Glioblastoma.
Year : 2015
Volume : 6
Issue : 8
First Page : 948
Last Page : 952
Authors : Quartararo CE, Reznik E, deCarvalho AC, Mikkelsen T, Stockwell BR.
Abstract : Identifying drugs for the treatment of glioblastoma (GBM), a rapidly fatal disease, has been challenging. Most screening efforts have been conducted with immortalized cell lines grown with fetal bovine serum, which have little relevance to the genomic features found in GBM patients. Patient-derived neurosphere cultures, while being more physiologically relevant, are difficult to screen and therefore are only used to test a few drug candidates after initial screening efforts. Laminin has been used to generate two-dimensional cell lines from patient tumors, preserving the genomic signature and alleviating some screening hurdles. We present here the first side-by-side comparison of inhibitor sensitivity of laminin and neurosphere-grown patient-derived GBM cell lines and show that both of these culture methods result in the same pattern of inhibitor sensitivity. We used these screening methods to evaluate the dependencies of seven patient-derived cell models: three grown on laminin and four grown as neurospheres, against 56 agents in 17-point dose-response curves in 384-well format in triplicate. This allowed us to establish differential sensitivity of chemotherapeutic agents across the seven patient-derived models. We found that MEK inhibition caused patient-sample-specific growth inhibition and that bortezomib, an FDA-approved proteasome inhibitor, was potently lethal in all patient-derived models. Furthermore, the screening results led us to test the combination of the Bcl-2 inhibitor ABT-263, and the mTOR inhibitor AZD-8055, which we found to be synergistic in a subset of patient-derived GBM models. Thus, we have identified new candidate therapeutics and developed a high-throughput screening system using patient-derived GBM samples.
Cytotoxicity against human MV4-11 cells assessed as growth inhibition after 24 hrs by MTT assay
|
Homo sapiens
|
0.43
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Cytotoxicity against human A2780S cells assessed as growth inhibition after 24 hrs by MTT assay
|
Homo sapiens
|
6.15
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Cytotoxicity against human HCT116 cells assessed as growth inhibition after 24 hrs by MTT assay
|
Homo sapiens
|
7.34
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of full length human recombinant HDAC2 expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measured after 1 hr by fluorescence assay
|
Homo sapiens
|
5.0
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of full length C-terminal His-tagged human recombinant HDAC3/NCOR2 (395 to 489 residues) expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measured after 1 hr by fluorescence assay
|
Homo sapiens
|
1.8
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of full length C-terminal His-tagged human recombinant HDAC8 expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measured after 1 hr by fluorescence assay
|
Homo sapiens
|
191.0
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of N-terminal GST/C-terminal His-tagged human recombinant HDAC4 (627 to 1084 residues) expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measured after 1 hr by fluorescence assay
|
Homo sapiens
|
409.0
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of human recombinant HDAC5 expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measured after 1 hr by fluorescence assay
|
Homo sapiens
|
674.0
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of N-terminal GST-tagged human recombinant HDAC7 (518 to end residues) expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measured after 1 hr by fluorescence assay
|
Homo sapiens
|
426.0
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of C-terminal His-tagged human recombinant HDAC9 (604 to 1066 residues) expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measured after 1 hr by fluorescence assay
|
Homo sapiens
|
554.0
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of full length human recombinant HDAC6 expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measured after 1 hr by fluorescence assay
|
Homo sapiens
|
27.0
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of human recombinant HDAC10 expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measured after 1 hr by fluorescence assay
|
Homo sapiens
|
2.8
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of full length human recombinant HDAC11 expressed in baculovirus infected insect Sf9 cells using Ac-peptide-AMC as substrate assessed as release of AMC preincubated for 15 mins followed by substrate addition measured after 1 hr by fluorescence assay
|
Homo sapiens
|
5.4
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of human recombinant HDAC1 (482 residues) by Color-de-Lys assay
|
Homo sapiens
|
1.7
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of full length recombinant human N-terminal GST-tagged p110 alpha/untagged p85 alpha expressed in baculovirus infected insect Sf9 cells using PI:3PS as substrate incubated for 60 mins by ADP-Glo luminescence assay
|
Homo sapiens
|
19.0
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of recombinant human p110beta expressed in baculovirus infected insect Sf9 cells incubated for 1 hr by ADP-gloreagen assay
|
Homo sapiens
|
54.0
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of His-tagged full length recombinant human p110gamma expressed in baculovirus expression system incubated for 1 hr by ADP-gloreagen assay
|
Homo sapiens
|
311.0
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of N-terminal His6-tagged recombinant full-length human p110delta/untagged recombinant full length human p85alpha expressed in baculovirus infected insect Sf9 cells incubated for 2 hrs by kinase-glo assay
|
Homo sapiens
|
39.0
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of HDAC in human HeLa cell nuclear extract using Ac-Leu-Gly-Lys (Ac)-AMC as substrate after 30 mins by fluorescence assay
|
Homo sapiens
|
6.8
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of HDAC6 in human A2780S cells assessed as tubulin acetylation incubated for 6 hrs by cytoblot assay
|
Homo sapiens
|
221.75
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of HDAC1/2/3 in human A2780S cells assessed as histone H3 acetylation incubated for 6 hrs by cytoblot assay
|
Homo sapiens
|
126.25
nM
|
|
Journal : J. Med. Chem.
Title : Development of Purine-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities.
Year : 2016
Volume : 59
Issue : 11
First Page : 5488
Last Page : 5504
Authors : Chen Y, Wang X, Xiang W, He L, Tang M, Wang F, Wang T, Yang Z, Yi Y, Wang H, Niu T, Zheng L, Lei L, Li X, Song H, Chen L.
Abstract : In the present study, a series of novel histone deacetylase (HDAC) inhibitors using the morpholinopurine as the capping group were designed and synthesized. Several compounds demonstrated significant HDAC inhibitory activities and antiproliferative effects against diverse human tumor cell lines. Among them, compound 10o was identified as a potent class I and class IIb HDAC inhibitor with good pharmaceutical profile and druglike properties. Western blot analysis further confirmed that 10o more effectively increased acetylated histone H3 than panobinostat (LBH-589) and vorinostat (SAHA) at the same concentration in vitro. In in vivo efficacy evaluations of HCT116, MV4-11, Ramos, and MM1S xenograft models, 10o showed higher efficacy than SAHA or LBH-589 without causing significant loss of body weight and toxicity. All the results indicated that 10o could be a suitable candidate for treatment of both solid and hematological cancer.
Inhibition of recombinant full length human N-terminal GST-tagged PI3K p110alpha/untagged p85alpha expressed in baculovirus infected insect Sf9 cells by ADP-Glo luminescent assay
|
Homo sapiens
|
19.0
nM
|
|
Journal : Eur J Med Chem
Title : Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.
Year : 2017
Volume : 136
First Page : 195
Last Page : 211
Authors : Fu RG, Sun Y, Sheng WB, Liao DF.
Abstract : The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents.
Inhibition of recombinant full length human N-terminal GST-tagged PI3K p110beta/untagged p85alpha expressed in baculovirus infected insect Sf9 cells by ADP-Glo luminescent assay
|
Homo sapiens
|
54.0
nM
|
|
Journal : Eur J Med Chem
Title : Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.
Year : 2017
Volume : 136
First Page : 195
Last Page : 211
Authors : Fu RG, Sun Y, Sheng WB, Liao DF.
Abstract : The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents.
Inhibition of recombinant full length human N-terminal GST-tagged PI3K p110delta/untagged p85alpha expressed in baculovirus infected insect Sf9 cells by ADP-Glo luminescent assay
|
Homo sapiens
|
39.0
nM
|
|
Journal : Eur J Med Chem
Title : Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.
Year : 2017
Volume : 136
First Page : 195
Last Page : 211
Authors : Fu RG, Sun Y, Sheng WB, Liao DF.
Abstract : The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents.
Inhibition of HDAC6 (unknown origin) using Color de lys as substrate by HTS assay
|
Homo sapiens
|
27.0
nM
|
|
Journal : Eur J Med Chem
Title : Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.
Year : 2017
Volume : 136
First Page : 195
Last Page : 211
Authors : Fu RG, Sun Y, Sheng WB, Liao DF.
Abstract : The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents.
Inhibition of HDAC2 (unknown origin) using Color de lys as substrate by HTS assay
|
Homo sapiens
|
5.0
nM
|
|
Journal : Eur J Med Chem
Title : Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.
Year : 2017
Volume : 136
First Page : 195
Last Page : 211
Authors : Fu RG, Sun Y, Sheng WB, Liao DF.
Abstract : The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents.
Inhibition of HDAC10 (unknown origin) using Color de lys as substrate by HTS assay
|
Homo sapiens
|
2.8
nM
|
|
Journal : Eur J Med Chem
Title : Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.
Year : 2017
Volume : 136
First Page : 195
Last Page : 211
Authors : Fu RG, Sun Y, Sheng WB, Liao DF.
Abstract : The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of Caco-2 cells at 10 uM after 48 hours by high content imaging
|
Homo sapiens
|
37.12
%
|
|
Title : Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection
Year : 2020
Authors : Bernhard Ellinger, Denisa Bojkova, Andrea Zaliani, Jindrich Cinatl, Carsten Claussen, Sandra Westhaus, Jeanette Reinshagen, Maria Kuzikov, Markus Wolf, Gerd Geisslinger, Philip Gribbon, Sandra Ciesek
Abstract : To identify possible candidates for progression towards clinical studies against SARS-CoV-2, we screened a well-defined collection of 5632 compounds including 3488 compounds which have undergone clinical investigations (marketed drugs, phases 1 -3, and withdrawn) across 600 indications. Compounds were screened for their inhibition of viral induced cytotoxicity using the human epithelial colorectal adenocarcinoma cell line Caco-2 and a SARS-CoV-2 isolate. The primary screen of 5632 compounds gave 271 hits. A total of 64 compounds with IC50 <20 µM were identified, including 19 compounds with IC50 < 1 µM. Of this confirmed hit population, 90% have not yet been previously reported as active against SARS-CoV-2 in-vitro cell assays. Some 37 of the actives are launched drugs, 19 are in phases 1-3 and 10 pre-clinical. Several inhibitors were associated with modulation of host pathways including kinase signaling P53 activation, ubiquitin pathways and PDE activity modulation, with long chain acyl transferases were effective viral inhibitors.
Antiproliferative activity against human HCT116 cells after 96 hrs by MTT assay
|
Homo sapiens
|
5.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Inhibition of recombinant C-terminal His/FLAG-tagged HDAC1 (unknown origin) expressed in baculovirus infected Sf9 insect cells using Ac-peptide as substrate preincubated for 15 mins followed by substrate addition and measured after 1 hr
|
Homo sapiens
|
0.36
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Inhibition of recombinant human PI3Kalpha using PIP2 as substrate incubated for 1 hr by kinase-glo assay
|
Homo sapiens
|
69.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Inhibition of recombinant human full length HDAC11 expressed in baculovirus infected Sf9 insect cells using Ac-peptide as substrate preincubated for 15 mins followed by substrate addition and measured after 1 hr
|
Homo sapiens
|
132.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Inhibition of recombinant human full length C-terminal His-tagged HDAC8 expressed in baculovirus infected Sf9 insect cells using Ac-peptide as substrate preincubated for 15 mins followed by substrate addition and measured after 1 hr
|
Homo sapiens
|
1.4
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Inhibition of HDAC6 (unknown origin) using Ac-peptide as substrate preincubated for 15 mins followed by substrate addition and measured after 1 hr
|
Homo sapiens
|
8.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Inhibition of recombinant human full length HDAC4 expressed in baculovirus infected Sf9 insect cells using Ac-peptide as substrate preincubated for 15 mins followed by substrate addition and measured after 1 hr
|
Homo sapiens
|
445.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Inhibition of recombinant human full length HDAC2 expressed in baculovirus infected Sf9 insect cells using Ac-peptide as substrate preincubated for 15 mins followed by substrate addition and measured after 1 hr
|
Homo sapiens
|
1.6
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Inhibition of recombinant human His-tagged PIK3CG expressed in baculovirus expression system using PIP2 as substrate incubated for 1 hr by ADP-glo assay
|
Homo sapiens
|
374.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Inhibition of recombinant human PIK3CB using PIP2 as substrate incubated for 1 hr by ADP-glo assay
|
Homo sapiens
|
16.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Inhibition of recombinant human His-tagged PIK3CD/PIK3R1 expressed in baculovirus expression system using PIP2 as substrate incubated for 1 hr by ADP-glo assay
|
Homo sapiens
|
359.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Inhibition of recombinant human N-terminal FLAG-tagged mTOR (1362 to end amino acids) using ULight-4E-BP1 as substrate incubated for 1 hr by LANCE Ultra assay
|
Homo sapiens
|
431.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Antiproliferative activity against human K562 cells after 96 hrs by MTT assay
|
Homo sapiens
|
280.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Antiproliferative activity against human MCF7 cells after 96 hrs by MTT assay
|
Homo sapiens
|
41.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Antiproliferative activity against human MDA-MB-453 cells after 96 hrs by MTT assay
|
Homo sapiens
|
9.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Antiproliferative activity against human HCT8 cells after 96 hrs by MTT assay
|
Homo sapiens
|
5.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Antiproliferative activity against human U87 cells after 96 hrs by MTT assay
|
Homo sapiens
|
7.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Antiproliferative activity against human NCI-H460 cells after 96 hrs by MTT assay
|
Homo sapiens
|
150.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Antiproliferative activity against human NCI-H1299 cells after 96 hrs by MTT assay
|
Homo sapiens
|
25.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Antiproliferative activity against human Capan2 cells after 96 hrs by MTT assay
|
Homo sapiens
|
7.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Antiproliferative activity against human SW1990 cells after 96 hrs by MTT assay
|
Homo sapiens
|
180.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Antiproliferative activity against human DU145 cells after 96 hrs by MTT assay
|
Homo sapiens
|
560.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Antiproliferative activity against human HGC27 cells after 96 hrs by MTT assay
|
Homo sapiens
|
41.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Antiproliferative activity against human HepG2 cells after 96 hrs by MTT assay
|
Homo sapiens
|
15.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Antiproliferative activity against human HuH7 cells after 96 hrs by MTT assay
|
Homo sapiens
|
560.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Antiproliferative activity against human Bel7402 cells after 96 hrs by MTT assay
|
Homo sapiens
|
13.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Biological Evaluation of 4-Methyl Quinazoline Derivatives as Anticancer Agents Simultaneously Targeting Phosphoinositide 3-Kinases and Histone Deacetylases.
Year : 2019
Volume : 62
Issue : 15
First Page : 6992
Last Page : 7014
Authors : Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H.
Abstract : Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure-activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Inhibition of HDAC1 (unknown origin)
|
Homo sapiens
|
1.7
nM
|
|
Journal : J Med Chem
Title : Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
Year : 2019
Volume : 62
Issue : 7
First Page : 3171
Last Page : 3183
Authors : Luan Y, Li J, Bernatchez JA, Li R.
Abstract : Histone deacetylases (HDACs), encompassing at least 18 members, are promising targets for anticancer drug discovery and development. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. It has been well validated that an agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and in potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDAC inhibitor. In this perspective, the authors review the majority of reported kinase/HDAC hybrid inhibitors.
Inhibition of HDAC2 (unknown origin)
|
Homo sapiens
|
5.0
nM
|
|
Journal : J Med Chem
Title : Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
Year : 2019
Volume : 62
Issue : 7
First Page : 3171
Last Page : 3183
Authors : Luan Y, Li J, Bernatchez JA, Li R.
Abstract : Histone deacetylases (HDACs), encompassing at least 18 members, are promising targets for anticancer drug discovery and development. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. It has been well validated that an agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and in potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDAC inhibitor. In this perspective, the authors review the majority of reported kinase/HDAC hybrid inhibitors.
Inhibition of HDAC3 (unknown origin)
|
Homo sapiens
|
1.8
nM
|
|
Journal : J Med Chem
Title : Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
Year : 2019
Volume : 62
Issue : 7
First Page : 3171
Last Page : 3183
Authors : Luan Y, Li J, Bernatchez JA, Li R.
Abstract : Histone deacetylases (HDACs), encompassing at least 18 members, are promising targets for anticancer drug discovery and development. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. It has been well validated that an agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and in potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDAC inhibitor. In this perspective, the authors review the majority of reported kinase/HDAC hybrid inhibitors.
Inhibition of HDAC4 (unknown origin)
|
Homo sapiens
|
191.0
nM
|
|
Journal : J Med Chem
Title : Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
Year : 2019
Volume : 62
Issue : 7
First Page : 3171
Last Page : 3183
Authors : Luan Y, Li J, Bernatchez JA, Li R.
Abstract : Histone deacetylases (HDACs), encompassing at least 18 members, are promising targets for anticancer drug discovery and development. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. It has been well validated that an agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and in potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDAC inhibitor. In this perspective, the authors review the majority of reported kinase/HDAC hybrid inhibitors.
Inhibition of HDAC5 (unknown origin)
|
Homo sapiens
|
406.0
nM
|
|
Journal : J Med Chem
Title : Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
Year : 2019
Volume : 62
Issue : 7
First Page : 3171
Last Page : 3183
Authors : Luan Y, Li J, Bernatchez JA, Li R.
Abstract : Histone deacetylases (HDACs), encompassing at least 18 members, are promising targets for anticancer drug discovery and development. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. It has been well validated that an agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and in potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDAC inhibitor. In this perspective, the authors review the majority of reported kinase/HDAC hybrid inhibitors.
Inhibition of HDAC6 (unknown origin)
|
Homo sapiens
|
674.0
nM
|
|
Journal : J Med Chem
Title : Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
Year : 2019
Volume : 62
Issue : 7
First Page : 3171
Last Page : 3183
Authors : Luan Y, Li J, Bernatchez JA, Li R.
Abstract : Histone deacetylases (HDACs), encompassing at least 18 members, are promising targets for anticancer drug discovery and development. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. It has been well validated that an agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and in potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDAC inhibitor. In this perspective, the authors review the majority of reported kinase/HDAC hybrid inhibitors.
Inhibition of HDAC7 (unknown origin)
|
Homo sapiens
|
27.0
nM
|
|
Journal : J Med Chem
Title : Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
Year : 2019
Volume : 62
Issue : 7
First Page : 3171
Last Page : 3183
Authors : Luan Y, Li J, Bernatchez JA, Li R.
Abstract : Histone deacetylases (HDACs), encompassing at least 18 members, are promising targets for anticancer drug discovery and development. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. It has been well validated that an agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and in potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDAC inhibitor. In this perspective, the authors review the majority of reported kinase/HDAC hybrid inhibitors.
Inhibition of HDAC8 (unknown origin)
|
Homo sapiens
|
426.0
nM
|
|
Journal : J Med Chem
Title : Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
Year : 2019
Volume : 62
Issue : 7
First Page : 3171
Last Page : 3183
Authors : Luan Y, Li J, Bernatchez JA, Li R.
Abstract : Histone deacetylases (HDACs), encompassing at least 18 members, are promising targets for anticancer drug discovery and development. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. It has been well validated that an agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and in potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDAC inhibitor. In this perspective, the authors review the majority of reported kinase/HDAC hybrid inhibitors.
Inhibition of HDAC9 (unknown origin)
|
Homo sapiens
|
554.0
nM
|
|
Journal : J Med Chem
Title : Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
Year : 2019
Volume : 62
Issue : 7
First Page : 3171
Last Page : 3183
Authors : Luan Y, Li J, Bernatchez JA, Li R.
Abstract : Histone deacetylases (HDACs), encompassing at least 18 members, are promising targets for anticancer drug discovery and development. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. It has been well validated that an agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and in potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDAC inhibitor. In this perspective, the authors review the majority of reported kinase/HDAC hybrid inhibitors.
Inhibition of HDAC10 (unknown origin)
|
Homo sapiens
|
2.8
nM
|
|
Journal : J Med Chem
Title : Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
Year : 2019
Volume : 62
Issue : 7
First Page : 3171
Last Page : 3183
Authors : Luan Y, Li J, Bernatchez JA, Li R.
Abstract : Histone deacetylases (HDACs), encompassing at least 18 members, are promising targets for anticancer drug discovery and development. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. It has been well validated that an agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and in potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDAC inhibitor. In this perspective, the authors review the majority of reported kinase/HDAC hybrid inhibitors.
Inhibition of HDAC11 (unknown origin)
|
Homo sapiens
|
5.4
nM
|
|
Journal : J Med Chem
Title : Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
Year : 2019
Volume : 62
Issue : 7
First Page : 3171
Last Page : 3183
Authors : Luan Y, Li J, Bernatchez JA, Li R.
Abstract : Histone deacetylases (HDACs), encompassing at least 18 members, are promising targets for anticancer drug discovery and development. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. It has been well validated that an agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and in potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDAC inhibitor. In this perspective, the authors review the majority of reported kinase/HDAC hybrid inhibitors.
Inhibition of recombinant human full-length N-terminal GST-tagged p110alpha/untagged full-length p85alpha expressed in baculovirus infected Sf9 cells using PIP2 as substrate by ADP-glo luminescence assay
|
Homo sapiens
|
19.0
nM
|
|
Journal : J Med Chem
Title : Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
Year : 2019
Volume : 62
Issue : 7
First Page : 3171
Last Page : 3183
Authors : Luan Y, Li J, Bernatchez JA, Li R.
Abstract : Histone deacetylases (HDACs), encompassing at least 18 members, are promising targets for anticancer drug discovery and development. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. It has been well validated that an agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and in potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDAC inhibitor. In this perspective, the authors review the majority of reported kinase/HDAC hybrid inhibitors.
Inhibition of recombinant human full-length N-terminal GST-tagged p110beta/untagged full-length p85alpha expressed in baculovirus infected Sf9 cells using PIP2 as substrate by ADP-glo luminescence assay
|
Homo sapiens
|
54.0
nM
|
|
Journal : J Med Chem
Title : Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
Year : 2019
Volume : 62
Issue : 7
First Page : 3171
Last Page : 3183
Authors : Luan Y, Li J, Bernatchez JA, Li R.
Abstract : Histone deacetylases (HDACs), encompassing at least 18 members, are promising targets for anticancer drug discovery and development. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. It has been well validated that an agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and in potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDAC inhibitor. In this perspective, the authors review the majority of reported kinase/HDAC hybrid inhibitors.
Inhibition of recombinant human full-length N-terminal GST-tagged p110delta/untagged full-length p85alpha expressed in baculovirus infected Sf9 cells using PIP2 as substrate by ADP-glo luminescence assay
|
Homo sapiens
|
39.0
nM
|
|
Journal : J Med Chem
Title : Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy.
Year : 2019
Volume : 62
Issue : 7
First Page : 3171
Last Page : 3183
Authors : Luan Y, Li J, Bernatchez JA, Li R.
Abstract : Histone deacetylases (HDACs), encompassing at least 18 members, are promising targets for anticancer drug discovery and development. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. It has been well validated that an agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and in potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDAC inhibitor. In this perspective, the authors review the majority of reported kinase/HDAC hybrid inhibitors.
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
17.07
%
|
|
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
11.93
%
|
|
Title : Identification of inhibitors of SARS-Cov2 M-Pro enzymatic activity using a small molecule repurposing screen
Year : 2020
Authors : Maria Kuzikov, Elisa Costanzi, Jeanette Reinshagen, Francesca Esposito, Laura Vangeel, Markus Wolf, Bernhard Ellinger, Carsten Claussen, Gerd Geisslinger, Angela Corona, Daniela Iaconis, Carmine Talarico, Candida Manelfi, Rolando Cannalire, Giulia Rossetti, Jonas Gossen, Simone Albani, Francesco Musiani, Katja Herzog, Yang Ye, Barbara Giabbai, Nicola Demitri, Dirk Jochmans, Steven De Jonghe, Jasper Rymenants, Vincenzo Summa, Enzo Tramontano, Andrea R. Beccari, Pieter Leyssen, Paola Storici, Johan Neyts, Philip Gribbon, and Andrea Zaliani
Abstract : Compound repurposing is an important strategy being pursued in the identification of effective treatment against the SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (M-Pro), also termed 3CL-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyprotein into 11 non-structural proteins. We report the results of a screening campaign involving ca 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and chemicals regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, but we have also identified 68 compounds with IC50 lower than 1 uM and 127 compounds with IC50 lower than 5 uM. Profiling showed 67% of confirmed hits were selective (> 5 fold) against other Cys- and Ser- proteases (Chymotrypsin and Cathepsin-L) and MERS 3CL-Pro. Selected compounds were also analysed in their binding characteristics.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
4.34
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
2.55
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
2.55
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
4.34
%
|
|
Title : Cytopathic SARS-Cov2 screening on VERO-E6 cells in a large repurposing effort
Year : 2020
Authors : Andrea Zaliani, Laura Vangeel, Jeanette Reinshagen, Daniela Iaconis, Maria Kuzikov, Oliver Keminer, Markus Wolf, Bernhard Ellinger, Francesca Esposito, Angela Corona, Enzo Tramontano, Candida Manelfi, Katja Herzog, Dirk Jochmans, Steven De Jonghe, Winston Chiu, Thibault Francken, Joost Schepers, Caroline Collard, Kayvan Abbasi, Carsten Claussen , Vincenzo Summa, Andrea R. Beccari, Johan Neyts, Philip Gribbon and Pieter Leyssen
Abstract : Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.
Inhibition of human PI3Kdelta incubated for 1 hr by ADP-Glo kinase assay
|
Homo sapiens
|
6.3
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
Year : 2018
Volume : 61
Issue : 4.0
First Page : 1552
Last Page : 1575
Authors : Chen D,Soh CK,Goh WH,Wang H
Abstract : Class I histone deacetylases (HDACs) are highly expressed and/or upregulated in hepatocellular carcinoma (HCC) and are associated with aggressiveness, spread, and increased mortality of HCC. Activation of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was involved in the development of HCC and acquired resistance to sorafenib. A series of purine or 5H-pyrrolo[3,2-d]pyrimidine based hydroxamates were designed and developed as multitarget drugs to modulate both HDACs and the PI3K/Akt/mTOR pathway. Among 39 cell lines screened, the molecules (e.g., 20e, 20f, and 20q) were the most selective against leukemia, lymphoma, and HCC cells; they also demonstrated target modulation in cancer cell lines and in mice bearing MV4-11 and HepG2 tumors. Compound 20f in particular showed significant single agent oral efficacy in hypervascular liver cancer models (e.g., HepG2, HuH-7, and Hep3B) and was well-tolerated. These encouraging results, along with its favorable target profile and tissue distribution, warrant further development of 20f.
Inhibition of full length recombinant human C-terminal FLAG/His-tagged HDAC1 (1 to 482 end residues) expressed in baculovirus infected Sf9 cells using fluorogenic HDAC substrate 3 measured after 30 mins by fluorescence based assay
|
Homo sapiens
|
2.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
Year : 2018
Volume : 61
Issue : 4.0
First Page : 1552
Last Page : 1575
Authors : Chen D,Soh CK,Goh WH,Wang H
Abstract : Class I histone deacetylases (HDACs) are highly expressed and/or upregulated in hepatocellular carcinoma (HCC) and are associated with aggressiveness, spread, and increased mortality of HCC. Activation of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was involved in the development of HCC and acquired resistance to sorafenib. A series of purine or 5H-pyrrolo[3,2-d]pyrimidine based hydroxamates were designed and developed as multitarget drugs to modulate both HDACs and the PI3K/Akt/mTOR pathway. Among 39 cell lines screened, the molecules (e.g., 20e, 20f, and 20q) were the most selective against leukemia, lymphoma, and HCC cells; they also demonstrated target modulation in cancer cell lines and in mice bearing MV4-11 and HepG2 tumors. Compound 20f in particular showed significant single agent oral efficacy in hypervascular liver cancer models (e.g., HepG2, HuH-7, and Hep3B) and was well-tolerated. These encouraging results, along with its favorable target profile and tissue distribution, warrant further development of 20f.
Inhibition of HDAC2 (unknown origin) using fluorogenic HDAC substrate 3 incubated for 30 mins by fluorescence based assay
|
Homo sapiens
|
8.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
Year : 2018
Volume : 61
Issue : 4.0
First Page : 1552
Last Page : 1575
Authors : Chen D,Soh CK,Goh WH,Wang H
Abstract : Class I histone deacetylases (HDACs) are highly expressed and/or upregulated in hepatocellular carcinoma (HCC) and are associated with aggressiveness, spread, and increased mortality of HCC. Activation of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was involved in the development of HCC and acquired resistance to sorafenib. A series of purine or 5H-pyrrolo[3,2-d]pyrimidine based hydroxamates were designed and developed as multitarget drugs to modulate both HDACs and the PI3K/Akt/mTOR pathway. Among 39 cell lines screened, the molecules (e.g., 20e, 20f, and 20q) were the most selective against leukemia, lymphoma, and HCC cells; they also demonstrated target modulation in cancer cell lines and in mice bearing MV4-11 and HepG2 tumors. Compound 20f in particular showed significant single agent oral efficacy in hypervascular liver cancer models (e.g., HepG2, HuH-7, and Hep3B) and was well-tolerated. These encouraging results, along with its favorable target profile and tissue distribution, warrant further development of 20f.
Inhibition of recombinant human C-terminal His-tagged HDAC3 (1 to 428 end residues)/N-terminal GST-tagged recombinant human NCoR2 (395 to 489 residues) expressed in baculovirus infected Sf9 cells using fluorogenic HDAC substrate 3 measured after 30 mins by fluorescence based assay
|
Homo sapiens
|
3.2
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
Year : 2018
Volume : 61
Issue : 4.0
First Page : 1552
Last Page : 1575
Authors : Chen D,Soh CK,Goh WH,Wang H
Abstract : Class I histone deacetylases (HDACs) are highly expressed and/or upregulated in hepatocellular carcinoma (HCC) and are associated with aggressiveness, spread, and increased mortality of HCC. Activation of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was involved in the development of HCC and acquired resistance to sorafenib. A series of purine or 5H-pyrrolo[3,2-d]pyrimidine based hydroxamates were designed and developed as multitarget drugs to modulate both HDACs and the PI3K/Akt/mTOR pathway. Among 39 cell lines screened, the molecules (e.g., 20e, 20f, and 20q) were the most selective against leukemia, lymphoma, and HCC cells; they also demonstrated target modulation in cancer cell lines and in mice bearing MV4-11 and HepG2 tumors. Compound 20f in particular showed significant single agent oral efficacy in hypervascular liver cancer models (e.g., HepG2, HuH-7, and Hep3B) and was well-tolerated. These encouraging results, along with its favorable target profile and tissue distribution, warrant further development of 20f.
Inhibition of recombinant human N-terminal GST-tagged and C-terminal His-tagged HDAC4 (627 to 1084 end residues) expressed in baculovirus infected Sf9 cells using fluorogenic HDAC class2a as substrate measured after 30 mins by fluorescence based assay
|
Homo sapiens
|
479.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
Year : 2018
Volume : 61
Issue : 4.0
First Page : 1552
Last Page : 1575
Authors : Chen D,Soh CK,Goh WH,Wang H
Abstract : Class I histone deacetylases (HDACs) are highly expressed and/or upregulated in hepatocellular carcinoma (HCC) and are associated with aggressiveness, spread, and increased mortality of HCC. Activation of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was involved in the development of HCC and acquired resistance to sorafenib. A series of purine or 5H-pyrrolo[3,2-d]pyrimidine based hydroxamates were designed and developed as multitarget drugs to modulate both HDACs and the PI3K/Akt/mTOR pathway. Among 39 cell lines screened, the molecules (e.g., 20e, 20f, and 20q) were the most selective against leukemia, lymphoma, and HCC cells; they also demonstrated target modulation in cancer cell lines and in mice bearing MV4-11 and HepG2 tumors. Compound 20f in particular showed significant single agent oral efficacy in hypervascular liver cancer models (e.g., HepG2, HuH-7, and Hep3B) and was well-tolerated. These encouraging results, along with its favorable target profile and tissue distribution, warrant further development of 20f.
Inhibition of HDAC5 (unknown origin) using fluorogenic HDAC class2a as substrate measured after 30 mins by fluorescence based assay
|
Homo sapiens
|
581.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
Year : 2018
Volume : 61
Issue : 4.0
First Page : 1552
Last Page : 1575
Authors : Chen D,Soh CK,Goh WH,Wang H
Abstract : Class I histone deacetylases (HDACs) are highly expressed and/or upregulated in hepatocellular carcinoma (HCC) and are associated with aggressiveness, spread, and increased mortality of HCC. Activation of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was involved in the development of HCC and acquired resistance to sorafenib. A series of purine or 5H-pyrrolo[3,2-d]pyrimidine based hydroxamates were designed and developed as multitarget drugs to modulate both HDACs and the PI3K/Akt/mTOR pathway. Among 39 cell lines screened, the molecules (e.g., 20e, 20f, and 20q) were the most selective against leukemia, lymphoma, and HCC cells; they also demonstrated target modulation in cancer cell lines and in mice bearing MV4-11 and HepG2 tumors. Compound 20f in particular showed significant single agent oral efficacy in hypervascular liver cancer models (e.g., HepG2, HuH-7, and Hep3B) and was well-tolerated. These encouraging results, along with its favorable target profile and tissue distribution, warrant further development of 20f.
Inhibition of recombinant human N-terminal GST-tagged HDAC6 expressed in baculovirus infected Sf9 cells using fluorogenic HDAC substrate 3 measured after 30 mins by fluorescence based assay
|
Homo sapiens
|
34.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
Year : 2018
Volume : 61
Issue : 4.0
First Page : 1552
Last Page : 1575
Authors : Chen D,Soh CK,Goh WH,Wang H
Abstract : Class I histone deacetylases (HDACs) are highly expressed and/or upregulated in hepatocellular carcinoma (HCC) and are associated with aggressiveness, spread, and increased mortality of HCC. Activation of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was involved in the development of HCC and acquired resistance to sorafenib. A series of purine or 5H-pyrrolo[3,2-d]pyrimidine based hydroxamates were designed and developed as multitarget drugs to modulate both HDACs and the PI3K/Akt/mTOR pathway. Among 39 cell lines screened, the molecules (e.g., 20e, 20f, and 20q) were the most selective against leukemia, lymphoma, and HCC cells; they also demonstrated target modulation in cancer cell lines and in mice bearing MV4-11 and HepG2 tumors. Compound 20f in particular showed significant single agent oral efficacy in hypervascular liver cancer models (e.g., HepG2, HuH-7, and Hep3B) and was well-tolerated. These encouraging results, along with its favorable target profile and tissue distribution, warrant further development of 20f.
Inhibition of N-terminal GST-tagged human HDAC7 (518 to end residues) expressed in baculovirus infected Sf9 cells using fluorogenic HDAC class2a as substrate measured after 30 mins by fluorescence based assay
|
Homo sapiens
|
528.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
Year : 2018
Volume : 61
Issue : 4.0
First Page : 1552
Last Page : 1575
Authors : Chen D,Soh CK,Goh WH,Wang H
Abstract : Class I histone deacetylases (HDACs) are highly expressed and/or upregulated in hepatocellular carcinoma (HCC) and are associated with aggressiveness, spread, and increased mortality of HCC. Activation of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was involved in the development of HCC and acquired resistance to sorafenib. A series of purine or 5H-pyrrolo[3,2-d]pyrimidine based hydroxamates were designed and developed as multitarget drugs to modulate both HDACs and the PI3K/Akt/mTOR pathway. Among 39 cell lines screened, the molecules (e.g., 20e, 20f, and 20q) were the most selective against leukemia, lymphoma, and HCC cells; they also demonstrated target modulation in cancer cell lines and in mice bearing MV4-11 and HepG2 tumors. Compound 20f in particular showed significant single agent oral efficacy in hypervascular liver cancer models (e.g., HepG2, HuH-7, and Hep3B) and was well-tolerated. These encouraging results, along with its favorable target profile and tissue distribution, warrant further development of 20f.
Inhibition of recombinant human full length C-terminal His-tagged HDAC8 expressed in baculovirus infected Sf9 cells using fluorogenic HDAC class2a as substrate measured after 30 mins by fluorescence based assay
|
Homo sapiens
|
54.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
Year : 2018
Volume : 61
Issue : 4.0
First Page : 1552
Last Page : 1575
Authors : Chen D,Soh CK,Goh WH,Wang H
Abstract : Class I histone deacetylases (HDACs) are highly expressed and/or upregulated in hepatocellular carcinoma (HCC) and are associated with aggressiveness, spread, and increased mortality of HCC. Activation of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was involved in the development of HCC and acquired resistance to sorafenib. A series of purine or 5H-pyrrolo[3,2-d]pyrimidine based hydroxamates were designed and developed as multitarget drugs to modulate both HDACs and the PI3K/Akt/mTOR pathway. Among 39 cell lines screened, the molecules (e.g., 20e, 20f, and 20q) were the most selective against leukemia, lymphoma, and HCC cells; they also demonstrated target modulation in cancer cell lines and in mice bearing MV4-11 and HepG2 tumors. Compound 20f in particular showed significant single agent oral efficacy in hypervascular liver cancer models (e.g., HepG2, HuH-7, and Hep3B) and was well-tolerated. These encouraging results, along with its favorable target profile and tissue distribution, warrant further development of 20f.
Inhibition of C-terminal His-tagged human HDAC9 (604 to 1066 residues) expressed in baculovirus infected Sf9 cells using fluorogenic HDAC class2a as substrate measured after 30 mins by fluorescence based assay
|
Homo sapiens
|
639.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
Year : 2018
Volume : 61
Issue : 4.0
First Page : 1552
Last Page : 1575
Authors : Chen D,Soh CK,Goh WH,Wang H
Abstract : Class I histone deacetylases (HDACs) are highly expressed and/or upregulated in hepatocellular carcinoma (HCC) and are associated with aggressiveness, spread, and increased mortality of HCC. Activation of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was involved in the development of HCC and acquired resistance to sorafenib. A series of purine or 5H-pyrrolo[3,2-d]pyrimidine based hydroxamates were designed and developed as multitarget drugs to modulate both HDACs and the PI3K/Akt/mTOR pathway. Among 39 cell lines screened, the molecules (e.g., 20e, 20f, and 20q) were the most selective against leukemia, lymphoma, and HCC cells; they also demonstrated target modulation in cancer cell lines and in mice bearing MV4-11 and HepG2 tumors. Compound 20f in particular showed significant single agent oral efficacy in hypervascular liver cancer models (e.g., HepG2, HuH-7, and Hep3B) and was well-tolerated. These encouraging results, along with its favorable target profile and tissue distribution, warrant further development of 20f.
Inhibition of N-terminal FLAG-tagged human HDAC10 (2 to 631 residues) expressed in baculovirus infected Sf9 cells using fluorogenic HDAC substrate 3 measured after 30 mins by fluorescence based assay
|
Homo sapiens
|
4.1
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
Year : 2018
Volume : 61
Issue : 4.0
First Page : 1552
Last Page : 1575
Authors : Chen D,Soh CK,Goh WH,Wang H
Abstract : Class I histone deacetylases (HDACs) are highly expressed and/or upregulated in hepatocellular carcinoma (HCC) and are associated with aggressiveness, spread, and increased mortality of HCC. Activation of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was involved in the development of HCC and acquired resistance to sorafenib. A series of purine or 5H-pyrrolo[3,2-d]pyrimidine based hydroxamates were designed and developed as multitarget drugs to modulate both HDACs and the PI3K/Akt/mTOR pathway. Among 39 cell lines screened, the molecules (e.g., 20e, 20f, and 20q) were the most selective against leukemia, lymphoma, and HCC cells; they also demonstrated target modulation in cancer cell lines and in mice bearing MV4-11 and HepG2 tumors. Compound 20f in particular showed significant single agent oral efficacy in hypervascular liver cancer models (e.g., HepG2, HuH-7, and Hep3B) and was well-tolerated. These encouraging results, along with its favorable target profile and tissue distribution, warrant further development of 20f.
Inhibition of human PI3Kalpha incubated for 1 hr by ADP-Glo kinase assay
|
Homo sapiens
|
7.9
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
Year : 2018
Volume : 61
Issue : 4.0
First Page : 1552
Last Page : 1575
Authors : Chen D,Soh CK,Goh WH,Wang H
Abstract : Class I histone deacetylases (HDACs) are highly expressed and/or upregulated in hepatocellular carcinoma (HCC) and are associated with aggressiveness, spread, and increased mortality of HCC. Activation of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was involved in the development of HCC and acquired resistance to sorafenib. A series of purine or 5H-pyrrolo[3,2-d]pyrimidine based hydroxamates were designed and developed as multitarget drugs to modulate both HDACs and the PI3K/Akt/mTOR pathway. Among 39 cell lines screened, the molecules (e.g., 20e, 20f, and 20q) were the most selective against leukemia, lymphoma, and HCC cells; they also demonstrated target modulation in cancer cell lines and in mice bearing MV4-11 and HepG2 tumors. Compound 20f in particular showed significant single agent oral efficacy in hypervascular liver cancer models (e.g., HepG2, HuH-7, and Hep3B) and was well-tolerated. These encouraging results, along with its favorable target profile and tissue distribution, warrant further development of 20f.
Inhibition of human PI3Kbeta incubated for 1 hr by ADP-Glo kinase assay
|
Homo sapiens
|
21.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
Year : 2018
Volume : 61
Issue : 4.0
First Page : 1552
Last Page : 1575
Authors : Chen D,Soh CK,Goh WH,Wang H
Abstract : Class I histone deacetylases (HDACs) are highly expressed and/or upregulated in hepatocellular carcinoma (HCC) and are associated with aggressiveness, spread, and increased mortality of HCC. Activation of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was involved in the development of HCC and acquired resistance to sorafenib. A series of purine or 5H-pyrrolo[3,2-d]pyrimidine based hydroxamates were designed and developed as multitarget drugs to modulate both HDACs and the PI3K/Akt/mTOR pathway. Among 39 cell lines screened, the molecules (e.g., 20e, 20f, and 20q) were the most selective against leukemia, lymphoma, and HCC cells; they also demonstrated target modulation in cancer cell lines and in mice bearing MV4-11 and HepG2 tumors. Compound 20f in particular showed significant single agent oral efficacy in hypervascular liver cancer models (e.g., HepG2, HuH-7, and Hep3B) and was well-tolerated. These encouraging results, along with its favorable target profile and tissue distribution, warrant further development of 20f.
Inhibition of human PI3Kgamma incubated for 1 hr by ADP-Glo kinase assay
|
Homo sapiens
|
112.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
Year : 2018
Volume : 61
Issue : 4.0
First Page : 1552
Last Page : 1575
Authors : Chen D,Soh CK,Goh WH,Wang H
Abstract : Class I histone deacetylases (HDACs) are highly expressed and/or upregulated in hepatocellular carcinoma (HCC) and are associated with aggressiveness, spread, and increased mortality of HCC. Activation of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was involved in the development of HCC and acquired resistance to sorafenib. A series of purine or 5H-pyrrolo[3,2-d]pyrimidine based hydroxamates were designed and developed as multitarget drugs to modulate both HDACs and the PI3K/Akt/mTOR pathway. Among 39 cell lines screened, the molecules (e.g., 20e, 20f, and 20q) were the most selective against leukemia, lymphoma, and HCC cells; they also demonstrated target modulation in cancer cell lines and in mice bearing MV4-11 and HepG2 tumors. Compound 20f in particular showed significant single agent oral efficacy in hypervascular liver cancer models (e.g., HepG2, HuH-7, and Hep3B) and was well-tolerated. These encouraging results, along with its favorable target profile and tissue distribution, warrant further development of 20f.
Inhibition of human mTOR
|
Homo sapiens
|
185.0
nM
|
|
Journal : J Med Chem
Title : Design, Synthesis, and Preclinical Evaluation of Fused Pyrimidine-Based Hydroxamates for the Treatment of Hepatocellular Carcinoma.
Year : 2018
Volume : 61
Issue : 4.0
First Page : 1552
Last Page : 1575
Authors : Chen D,Soh CK,Goh WH,Wang H
Abstract : Class I histone deacetylases (HDACs) are highly expressed and/or upregulated in hepatocellular carcinoma (HCC) and are associated with aggressiveness, spread, and increased mortality of HCC. Activation of phosphatidylinositol 3-kinase-Akt-mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was involved in the development of HCC and acquired resistance to sorafenib. A series of purine or 5H-pyrrolo[3,2-d]pyrimidine based hydroxamates were designed and developed as multitarget drugs to modulate both HDACs and the PI3K/Akt/mTOR pathway. Among 39 cell lines screened, the molecules (e.g., 20e, 20f, and 20q) were the most selective against leukemia, lymphoma, and HCC cells; they also demonstrated target modulation in cancer cell lines and in mice bearing MV4-11 and HepG2 tumors. Compound 20f in particular showed significant single agent oral efficacy in hypervascular liver cancer models (e.g., HepG2, HuH-7, and Hep3B) and was well-tolerated. These encouraging results, along with its favorable target profile and tissue distribution, warrant further development of 20f.
Inhibition of HDAC1 (unknown origin) by color de Lys colorimetric assay
|
Homo sapiens
|
2.0
nM
|
|
Journal : J Med Chem
Title : Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
Year : 2020
Volume : 63
Issue : 21.0
First Page : 12460
Last Page : 12484
Authors : Ho TCS,Chan AHY,Ganesan A
Abstract : It is now 30 years since the first report of a potent zinc-dependent histone deacetylase (HDAC) inhibitor appeared. Since then, five HDAC inhibitors have received regulatory approval for cancer chemotherapy while many others are in clinical development for oncology as well as other therapeutic indications. This Perspective reviews the biological and medicinal chemistry advances over the past 3 decades with an emphasis on the design of selective inhibitors that discriminate between the 11 human HDAC isoforms.
Inhibition of HDAC2 (unknown origin) by color de Lys colorimetric assay
|
Homo sapiens
|
5.0
nM
|
|
Journal : J Med Chem
Title : Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
Year : 2020
Volume : 63
Issue : 21.0
First Page : 12460
Last Page : 12484
Authors : Ho TCS,Chan AHY,Ganesan A
Abstract : It is now 30 years since the first report of a potent zinc-dependent histone deacetylase (HDAC) inhibitor appeared. Since then, five HDAC inhibitors have received regulatory approval for cancer chemotherapy while many others are in clinical development for oncology as well as other therapeutic indications. This Perspective reviews the biological and medicinal chemistry advances over the past 3 decades with an emphasis on the design of selective inhibitors that discriminate between the 11 human HDAC isoforms.
Inhibition of HDAC3 (unknown origin) by color de Lys colorimetric assay
|
Homo sapiens
|
2.0
nM
|
|
Journal : J Med Chem
Title : Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
Year : 2020
Volume : 63
Issue : 21.0
First Page : 12460
Last Page : 12484
Authors : Ho TCS,Chan AHY,Ganesan A
Abstract : It is now 30 years since the first report of a potent zinc-dependent histone deacetylase (HDAC) inhibitor appeared. Since then, five HDAC inhibitors have received regulatory approval for cancer chemotherapy while many others are in clinical development for oncology as well as other therapeutic indications. This Perspective reviews the biological and medicinal chemistry advances over the past 3 decades with an emphasis on the design of selective inhibitors that discriminate between the 11 human HDAC isoforms.
Inhibition of HDAC8 (unknown origin) by color de Lys colorimetric assay
|
Homo sapiens
|
191.0
nM
|
|
Journal : J Med Chem
Title : Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
Year : 2020
Volume : 63
Issue : 21.0
First Page : 12460
Last Page : 12484
Authors : Ho TCS,Chan AHY,Ganesan A
Abstract : It is now 30 years since the first report of a potent zinc-dependent histone deacetylase (HDAC) inhibitor appeared. Since then, five HDAC inhibitors have received regulatory approval for cancer chemotherapy while many others are in clinical development for oncology as well as other therapeutic indications. This Perspective reviews the biological and medicinal chemistry advances over the past 3 decades with an emphasis on the design of selective inhibitors that discriminate between the 11 human HDAC isoforms.
Inhibition of HDAC4 (unknown origin) by color de Lys colorimetric assay
|
Homo sapiens
|
409.0
nM
|
|
Journal : J Med Chem
Title : Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
Year : 2020
Volume : 63
Issue : 21.0
First Page : 12460
Last Page : 12484
Authors : Ho TCS,Chan AHY,Ganesan A
Abstract : It is now 30 years since the first report of a potent zinc-dependent histone deacetylase (HDAC) inhibitor appeared. Since then, five HDAC inhibitors have received regulatory approval for cancer chemotherapy while many others are in clinical development for oncology as well as other therapeutic indications. This Perspective reviews the biological and medicinal chemistry advances over the past 3 decades with an emphasis on the design of selective inhibitors that discriminate between the 11 human HDAC isoforms.
Inhibition of HDAC5 (unknown origin) by color de Lys colorimetric assay
|
Homo sapiens
|
674.0
nM
|
|
Journal : J Med Chem
Title : Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
Year : 2020
Volume : 63
Issue : 21.0
First Page : 12460
Last Page : 12484
Authors : Ho TCS,Chan AHY,Ganesan A
Abstract : It is now 30 years since the first report of a potent zinc-dependent histone deacetylase (HDAC) inhibitor appeared. Since then, five HDAC inhibitors have received regulatory approval for cancer chemotherapy while many others are in clinical development for oncology as well as other therapeutic indications. This Perspective reviews the biological and medicinal chemistry advances over the past 3 decades with an emphasis on the design of selective inhibitors that discriminate between the 11 human HDAC isoforms.
Inhibition of HDAC7 (unknown origin) by color de Lys colorimetric assay
|
Homo sapiens
|
426.0
nM
|
|
Journal : J Med Chem
Title : Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
Year : 2020
Volume : 63
Issue : 21.0
First Page : 12460
Last Page : 12484
Authors : Ho TCS,Chan AHY,Ganesan A
Abstract : It is now 30 years since the first report of a potent zinc-dependent histone deacetylase (HDAC) inhibitor appeared. Since then, five HDAC inhibitors have received regulatory approval for cancer chemotherapy while many others are in clinical development for oncology as well as other therapeutic indications. This Perspective reviews the biological and medicinal chemistry advances over the past 3 decades with an emphasis on the design of selective inhibitors that discriminate between the 11 human HDAC isoforms.
Inhibition of HDAC9 (unknown origin) by color de Lys colorimetric assay
|
Homo sapiens
|
554.0
nM
|
|
Journal : J Med Chem
Title : Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
Year : 2020
Volume : 63
Issue : 21.0
First Page : 12460
Last Page : 12484
Authors : Ho TCS,Chan AHY,Ganesan A
Abstract : It is now 30 years since the first report of a potent zinc-dependent histone deacetylase (HDAC) inhibitor appeared. Since then, five HDAC inhibitors have received regulatory approval for cancer chemotherapy while many others are in clinical development for oncology as well as other therapeutic indications. This Perspective reviews the biological and medicinal chemistry advances over the past 3 decades with an emphasis on the design of selective inhibitors that discriminate between the 11 human HDAC isoforms.
Inhibition of HDAC6 (unknown origin) by color de Lys colorimetric assay
|
Homo sapiens
|
27.0
nM
|
|
Journal : J Med Chem
Title : Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
Year : 2020
Volume : 63
Issue : 21.0
First Page : 12460
Last Page : 12484
Authors : Ho TCS,Chan AHY,Ganesan A
Abstract : It is now 30 years since the first report of a potent zinc-dependent histone deacetylase (HDAC) inhibitor appeared. Since then, five HDAC inhibitors have received regulatory approval for cancer chemotherapy while many others are in clinical development for oncology as well as other therapeutic indications. This Perspective reviews the biological and medicinal chemistry advances over the past 3 decades with an emphasis on the design of selective inhibitors that discriminate between the 11 human HDAC isoforms.
Inhibition of HDAC10 (unknown origin) by color de Lys colorimetric assay
|
Homo sapiens
|
3.0
nM
|
|
Journal : J Med Chem
Title : Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
Year : 2020
Volume : 63
Issue : 21.0
First Page : 12460
Last Page : 12484
Authors : Ho TCS,Chan AHY,Ganesan A
Abstract : It is now 30 years since the first report of a potent zinc-dependent histone deacetylase (HDAC) inhibitor appeared. Since then, five HDAC inhibitors have received regulatory approval for cancer chemotherapy while many others are in clinical development for oncology as well as other therapeutic indications. This Perspective reviews the biological and medicinal chemistry advances over the past 3 decades with an emphasis on the design of selective inhibitors that discriminate between the 11 human HDAC isoforms.
Inhibition of HDAC11 (unknown origin) by color de Lys colorimetric assay
|
Homo sapiens
|
5.0
nM
|
|
Journal : J Med Chem
Title : Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
Year : 2020
Volume : 63
Issue : 21.0
First Page : 12460
Last Page : 12484
Authors : Ho TCS,Chan AHY,Ganesan A
Abstract : It is now 30 years since the first report of a potent zinc-dependent histone deacetylase (HDAC) inhibitor appeared. Since then, five HDAC inhibitors have received regulatory approval for cancer chemotherapy while many others are in clinical development for oncology as well as other therapeutic indications. This Perspective reviews the biological and medicinal chemistry advances over the past 3 decades with an emphasis on the design of selective inhibitors that discriminate between the 11 human HDAC isoforms.
Inhibition of human PI3K alpha by ADP-Glo luminescent kinase assay
|
Homo sapiens
|
19.0
nM
|
|
Inhibition of human PI3K beta by ADP-Glo luminescent kinase assay
|
Homo sapiens
|
54.0
nM
|
|
Inhibition of human PI3K delta by ADP-Glo luminescent kinase assay
|
None
|
39.0
nM
|
|
Inhibition of HDAC1 (unknown origin) by color-de-lys assay
|
Homo sapiens
|
1.7
nM
|
|