Inhibition of Rho kinase
|
Homo sapiens
|
180.0
nM
|
|
Journal : Bioorg. Med. Chem.
Title : Design and synthesis of rho kinase inhibitors (III).
Year : 2007
Volume : 15
Issue : 2
First Page : 1022
Last Page : 1033
Authors : Iwakubo M, Takami A, Okada Y, Kawata T, Tagami Y, Sato M, Sugiyama T, Fukushima K, Taya S, Amano M, Kaibuchi K, Iijima H.
Abstract : The structure-activity relationship of Rho kinase inhibitors bearing an isoquinoline scaffold was studied. N-(1-Benzyl-3-pyrrolidyl)-N-(5-isoquinolyl)amine analogues were optimized with respect to their inhibitory potencies for the enzyme and for chemotaxis. The potent analogues were further evaluated by an ex vivo test in which the selected compounds were orally administered to rats, and the Rho kinase inhibitory potency observed in the rat serum was evaluated 3h after the administration. Compound 23g showed a high level of Rho kinase inhibitory activity in the rat serum and was stable in an in vitro metabolic test using a microsomal cytochrome preparation. The (R)-isomer of 23g displayed a higher level of inhibitory potency than the (S)-isomer in a cell-free kinase assay and in the cell migration assay (IC(50)(ENZ)=25 nM and IC(50)(MCP)=1 microM). The (R)-isomer successfully inhibited the phosphorylation of MBS (myosin-binding subunit) in cells.
Inhibitory constant against PKA
|
Homo sapiens
|
460.0
nM
|
|
Journal : J. Biol. Chem.
Title : The structure of dimeric ROCK I reveals the mechanism for ligand selectivity.
Year : 2006
Volume : 281
Issue : 1
First Page : 260
Last Page : 268
Authors : Jacobs M, Hayakawa K, Swenson L, Bellon S, Fleming M, Taslimi P, Doran J.
Abstract : ROCK or Rho-associated kinase, a serine/threonine kinase, is an effector of Rho-dependent signaling and is involved in actin-cytoskeleton assembly and cell motility and contraction. The ROCK protein consists of several domains: an N-terminal region, a kinase catalytic domain, a coiled-coil domain containing a RhoA binding site, and a pleckstrin homology domain. The C-terminal region of ROCK binds to and inhibits the kinase catalytic domains, and this inhibition is reversed by binding RhoA, a small GTPase. Here we present the structure of the N-terminal region and the kinase domain. In our structure, two N-terminal regions interact to form a dimerization domain linking two kinase domains together. This spatial arrangement presents the kinase active sites and regulatory sequences on a common face affording the possibility of both kinases simultaneously interacting with a dimeric inhibitory domain or with a dimeric substrate. The kinase domain adopts a catalytically competent conformation; however, no phosphorylation of active site residues is observed in the structure. We also determined the structures of ROCK bound to four different ATP-competitive small molecule inhibitors (Y-27632, fasudil, hydroxyfasudil, and H-1152P). Each of these compounds binds with reduced affinity to cAMP-dependent kinase (PKA), a highly homologous kinase. Subtle differences exist between the ROCK- and PKA-bound conformations of the inhibitors that suggest that interactions with a single amino acid of the active site (Ala215 in ROCK and Thr183 in PKA) determine the relative selectivity of these compounds. Hydroxyfasudil, a metabolite of fasudil, may be selective for ROCK over PKA through a reversed binding orientation.
Inhibitory constant against ROCK1
|
Homo sapiens
|
530.0
nM
|
|
Journal : J. Biol. Chem.
Title : The structure of dimeric ROCK I reveals the mechanism for ligand selectivity.
Year : 2006
Volume : 281
Issue : 1
First Page : 260
Last Page : 268
Authors : Jacobs M, Hayakawa K, Swenson L, Bellon S, Fleming M, Taslimi P, Doran J.
Abstract : ROCK or Rho-associated kinase, a serine/threonine kinase, is an effector of Rho-dependent signaling and is involved in actin-cytoskeleton assembly and cell motility and contraction. The ROCK protein consists of several domains: an N-terminal region, a kinase catalytic domain, a coiled-coil domain containing a RhoA binding site, and a pleckstrin homology domain. The C-terminal region of ROCK binds to and inhibits the kinase catalytic domains, and this inhibition is reversed by binding RhoA, a small GTPase. Here we present the structure of the N-terminal region and the kinase domain. In our structure, two N-terminal regions interact to form a dimerization domain linking two kinase domains together. This spatial arrangement presents the kinase active sites and regulatory sequences on a common face affording the possibility of both kinases simultaneously interacting with a dimeric inhibitory domain or with a dimeric substrate. The kinase domain adopts a catalytically competent conformation; however, no phosphorylation of active site residues is observed in the structure. We also determined the structures of ROCK bound to four different ATP-competitive small molecule inhibitors (Y-27632, fasudil, hydroxyfasudil, and H-1152P). Each of these compounds binds with reduced affinity to cAMP-dependent kinase (PKA), a highly homologous kinase. Subtle differences exist between the ROCK- and PKA-bound conformations of the inhibitors that suggest that interactions with a single amino acid of the active site (Ala215 in ROCK and Thr183 in PKA) determine the relative selectivity of these compounds. Hydroxyfasudil, a metabolite of fasudil, may be selective for ROCK over PKA through a reversed binding orientation.
Inhibition of human ROCK1 by homogenous luciferase assay
|
Homo sapiens
|
530.0
nM
|
|
Journal : J. Med. Chem.
Title : Hit to lead account of the discovery of bisbenzamide and related ureidobenzamide inhibitors of Rho kinase.
Year : 2010
Volume : 53
Issue : 2
First Page : 759
Last Page : 777
Authors : Morwick T, Büttner FH, Cywin CL, Dahmann G, Hickey E, Jakes S, Kaplita P, Kashem MA, Kerr S, Kugler S, Mao W, Marshall D, Paw Z, Shih CK, Wu F, Young E.
Abstract : A highly selective series of bisbenzamide inhibitors of Rho-associated coiled-coil forming protein kinase (ROCK) and a related ureidobenzamide series, both identified by high throughput screening (HTS), are described. Details of the hit validation and lead generation process, including structure-activity relationship (SAR) studies, a selectivity assessment, target-independent profiling (TIP) results, and an analysis of functional activity using a rat aortic ring assay are discussed.
Inhibition of human ROCK2 by homogenous luciferase assay
|
Homo sapiens
|
660.0
nM
|
|
Journal : J. Med. Chem.
Title : Hit to lead account of the discovery of bisbenzamide and related ureidobenzamide inhibitors of Rho kinase.
Year : 2010
Volume : 53
Issue : 2
First Page : 759
Last Page : 777
Authors : Morwick T, Büttner FH, Cywin CL, Dahmann G, Hickey E, Jakes S, Kaplita P, Kashem MA, Kerr S, Kugler S, Mao W, Marshall D, Paw Z, Shih CK, Wu F, Young E.
Abstract : A highly selective series of bisbenzamide inhibitors of Rho-associated coiled-coil forming protein kinase (ROCK) and a related ureidobenzamide series, both identified by high throughput screening (HTS), are described. Details of the hit validation and lead generation process, including structure-activity relationship (SAR) studies, a selectivity assessment, target-independent profiling (TIP) results, and an analysis of functional activity using a rat aortic ring assay are discussed.
Solubility at pH 4.5
|
None
|
180.0
nM
|
|
Journal : J. Med. Chem.
Title : Hit to lead account of the discovery of bisbenzamide and related ureidobenzamide inhibitors of Rho kinase.
Year : 2010
Volume : 53
Issue : 2
First Page : 759
Last Page : 777
Authors : Morwick T, Büttner FH, Cywin CL, Dahmann G, Hickey E, Jakes S, Kaplita P, Kashem MA, Kerr S, Kugler S, Mao W, Marshall D, Paw Z, Shih CK, Wu F, Young E.
Abstract : A highly selective series of bisbenzamide inhibitors of Rho-associated coiled-coil forming protein kinase (ROCK) and a related ureidobenzamide series, both identified by high throughput screening (HTS), are described. Details of the hit validation and lead generation process, including structure-activity relationship (SAR) studies, a selectivity assessment, target-independent profiling (TIP) results, and an analysis of functional activity using a rat aortic ring assay are discussed.
Inhibition of PKN2
|
None
|
780.0
nM
|
|
Journal : J. Med. Chem.
Title : Hit to lead account of the discovery of bisbenzamide and related ureidobenzamide inhibitors of Rho kinase.
Year : 2010
Volume : 53
Issue : 2
First Page : 759
Last Page : 777
Authors : Morwick T, Büttner FH, Cywin CL, Dahmann G, Hickey E, Jakes S, Kaplita P, Kashem MA, Kerr S, Kugler S, Mao W, Marshall D, Paw Z, Shih CK, Wu F, Young E.
Abstract : A highly selective series of bisbenzamide inhibitors of Rho-associated coiled-coil forming protein kinase (ROCK) and a related ureidobenzamide series, both identified by high throughput screening (HTS), are described. Details of the hit validation and lead generation process, including structure-activity relationship (SAR) studies, a selectivity assessment, target-independent profiling (TIP) results, and an analysis of functional activity using a rat aortic ring assay are discussed.
Inhibition of ROCK2
|
None
|
400.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Substituted 2H-isoquinolin-1-one as potent Rho-Kinase inhibitors. Part 1: Hit-to-lead account.
Year : 2010
Volume : 20
Issue : 11
First Page : 3235
Last Page : 3239
Authors : Wu F, Büttner FH, Chen R, Hickey E, Jakes S, Kaplita P, Kashem MA, Kerr S, Kugler S, Paw Z, Prokopowicz A, Shih CK, Snow R, Young E, Cywin CL.
Abstract : Two closely related scaffolds were identified through an uHTS campaign as desirable starting points for the development of Rho-Kinase (ROCK) inhibitors. Here, we describe our hit-to-lead evaluation process which culminated in the rapid discovery of potent leads such as 22 which successfully demonstrated an early in vivo proof of concept for anti-hypertensive activity.
Inhibition of ROCK1
|
None
|
660.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Substituted 2H-isoquinolin-1-one as potent Rho-Kinase inhibitors. Part 1: Hit-to-lead account.
Year : 2010
Volume : 20
Issue : 11
First Page : 3235
Last Page : 3239
Authors : Wu F, Büttner FH, Chen R, Hickey E, Jakes S, Kaplita P, Kashem MA, Kerr S, Kugler S, Paw Z, Prokopowicz A, Shih CK, Snow R, Young E, Cywin CL.
Abstract : Two closely related scaffolds were identified through an uHTS campaign as desirable starting points for the development of Rho-Kinase (ROCK) inhibitors. Here, we describe our hit-to-lead evaluation process which culminated in the rapid discovery of potent leads such as 22 which successfully demonstrated an early in vivo proof of concept for anti-hypertensive activity.
Inhibition of Prkcl2
|
None
|
780.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Substituted 2H-isoquinolin-1-one as potent Rho-Kinase inhibitors. Part 1: Hit-to-lead account.
Year : 2010
Volume : 20
Issue : 11
First Page : 3235
Last Page : 3239
Authors : Wu F, Büttner FH, Chen R, Hickey E, Jakes S, Kaplita P, Kashem MA, Kerr S, Kugler S, Paw Z, Prokopowicz A, Shih CK, Snow R, Young E, Cywin CL.
Abstract : Two closely related scaffolds were identified through an uHTS campaign as desirable starting points for the development of Rho-Kinase (ROCK) inhibitors. Here, we describe our hit-to-lead evaluation process which culminated in the rapid discovery of potent leads such as 22 which successfully demonstrated an early in vivo proof of concept for anti-hypertensive activity.
Inhibition of ROCK
|
None
|
181.97
nM
|
|
Journal : Eur. J. Med. Chem.
Title : Molecular modeling studies of Rho kinase inhibitors using molecular docking and 3D-QSAR analysis.
Year : 2010
Volume : 45
Issue : 7
First Page : 2768
Last Page : 2776
Authors : Qin J, Lei B, Xi L, Liu H, Yao X.
Abstract : Rho kinase (ROCK) has become an attractive target for the treatment of many diseases such as hypertension, stroke and cancer. In this work, molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed on a series of ROCK inhibitors. Molecular docking was used to explore the binding mode between the ligands and the receptor. Based on the docked conformations, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed to gain insights into the key structural factors affecting the activity. The results of the molecular modeling studies suggested that further modification of these inhibitors with bulky and hydrophobic groups that accommodated in the distal region of the ROCK binding pocket would improve the activity.
Inhibition of rabbit MKK1 expressed in Escherichia coli at 20 uM
|
Oryctolagus cuniculus
|
89.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human MAPK2/ERK2 expressed in Escherichia coli at 20 uM
|
Homo sapiens
|
94.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human JNK1a1/SAPK1c expressed in Escherichia coli at 20 uM
|
Homo sapiens
|
96.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human SAPK2a/p38 expressed in Escherichia coli at 20 uM
|
Homo sapiens
|
93.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human SAPK2b/p38b2 expressed in Escherichia coli at 20 uM
|
Homo sapiens
|
97.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human SAPK3/p38gamma expressed in Escherichia coli at 20 uM
|
Homo sapiens
|
87.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human SAPK4/p38delta expressed in Escherichia coli at 20 uM
|
Homo sapiens
|
103.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of MAPKAPK1b from rabbit skeletal muscle at 20 uM
|
Oryctolagus cuniculus
|
37.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human MAPKAPK2 expressed in Escherichia coli at 20 uM
|
Homo sapiens
|
90.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human MSK1 expressed in Sf9 cells at 20 uM
|
Homo sapiens
|
19.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human PRAK expressed in Sf9 cells at 20 uM
|
Homo sapiens
|
91.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of bovine heart PKA at 20 uM
|
Bos taurus
|
35.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human PKCalpha expressed in Escherichia coli at 20 uM
|
Homo sapiens
|
86.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human PDK1 expressed in Sf21 cells at 20 uM
|
Homo sapiens
|
92.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of human PKBalpha expressed in SF9 cells at 20 uM
|
Homo sapiens
|
88.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human SGK expressed in Sf9 cells at 20 uM
|
Homo sapiens
|
92.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human S6K1 expressed in Escherichia coli at 20 uM
|
Homo sapiens
|
32.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human GSK3b expressed in Sf21 cells at 20 uM
|
Homo sapiens
|
90.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of rat ROCK2 expressed in Sf9 cells at 20 uM
|
Rattus norvegicus
|
7.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of rat liver AMPK at 20 uM
|
Rattus norvegicus
|
77.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human CK2 expressed in Sf9 cells at 20 uM
|
Homo sapiens
|
102.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of PHK from rabbit skeletal muscle at 20 uM
|
Oryctolagus cuniculus
|
58.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human LCK expressed in Sf9 cells at 20 uM
|
Homo sapiens
|
94.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human CHK1 expressed in Escherichia coli at 20 uM
|
Homo sapiens
|
82.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human SkMLCK expressed in Escherichia coli at 20 uM
|
Homo sapiens
|
93.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of chicken SmMLCK expressed in Escherichia coli at 20 uM
|
Ovis aries
|
93.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of His-tagged human PRK2 expressed in HEK293 cells at 20 uM
|
Homo sapiens
|
15.0
%
|
|
Journal : Biochem. J.
Title : Specificity and mechanism of action of some commonly used protein kinase inhibitors.
Year : 2000
Volume : 351
Issue : 1
First Page : 95
Last Page : 105
Authors : Davies SP, Reddy H, Caivano M, Cohen P.
Abstract : The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
Inhibition of ROCK-1
|
None
|
100.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Fragment-based discovery of 6-substituted isoquinolin-1-amine based ROCK-I inhibitors.
Year : 2011
Volume : 21
Issue : 1
First Page : 97
Last Page : 101
Authors : Ray P, Wright J, Adam J, Bennett J, Boucharens S, Black D, Cook A, Brown AR, Epemolu O, Fletcher D, Haunso A, Huggett M, Jones P, Laats S, Lyons A, Mestres J, de Man J, Morphy R, Rankovic Z, Sherborne B, Sherry L, van Straten N, Westwood P, Zaman GZ.
Abstract : Fragment-based NMR screening of a small literature focused library led to identification of a historical thrombin/FactorXa building block, 17A, that was found to be a ROCK-I inhibitor. In the absence of an X-ray structure, fragment growth afforded 6-substituted isoquinolin-1-amine derivatives which were profiled in the primary ROCK-I IMAP assay. Compounds 23A and 23E were selected as fragment optimized hits for further profiling. Compound 23A has similar ROCK-1 affinity, potency and cell based efficacy to the first generation ROCK inhibitors, however, it has a superior PK profile in C57 mouse. Compound 23E demonstrates the feasibility of improving ROCK-1 affinity, potency and cell based efficacy for the series, however, it has a poor PK profile relative to 23A.
Inhibition of human recombinant N-terminal his-tagged ROCK1 (3-543) expressed in baculovirus infected Sf9 cells using Biotin-Ahx-AKRRLSSLRA-CONH2 substrate and [gamma-33P]ATP after 90 mins by scintillation proximity assay
|
Homo sapiens
|
300.0
nM
|
|
Journal : J. Pharmacol. Exp. Ther.
Title : Novel Rho kinase inhibitors with anti-inflammatory and vasodilatory activities.
Year : 2007
Volume : 320
Issue : 1
First Page : 89
Last Page : 98
Authors : Doe C, Bentley R, Behm DJ, Lafferty R, Stavenger R, Jung D, Bamford M, Panchal T, Grygielko E, Wright LL, Smith GK, Chen Z, Webb C, Khandekar S, Yi T, Kirkpatrick R, Dul E, Jolivette L, Marino JP, Willette R, Lee D, Hu E.
Abstract : Increased Rho kinase (ROCK) activity contributes to smooth muscle contraction and regulates blood pressure homeostasis. We hypothesized that potent and selective ROCK inhibitors with novel structural motifs would help elucidate the functional role of ROCK and further explore the therapeutic potential of ROCK inhibition for hypertension. In this article, we characterized two aminofurazan-based inhibitors, GSK269962A [N-(3-{[2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethyl-1H-imidazo[4, 5-c]pyridin-6-yl]oxy}phenyl)-4-{[2-(4-morpholinyl)ethyl]-oxy}benzamide] and SB-7720770-B [4-(7-{[(3S)-3-amino-1-pyrrolidinyl]carbonyl}-1-ethyl-1H-imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-amine], as members of a novel class of compounds that potently inhibit ROCK enzymatic activity. GSK269962A and SB-772077-B have IC50 values of 1.6 and 5.6 nM toward recombinant human ROCK1, respectively. GSK269962A also exhibited more than 30-fold selectivity against a panel of serine/threonine kinases. In lipopolysaccharide-stimulated monocytes, these inhibitors blocked the generation of inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-alpha. Furthermore, both SB-772077-B and GSK269962A induced vasorelaxation in preconstricted rat aorta with an IC50 of 39 and 35 nM, respectively. Oral administration of either GSK269962A or SB-772077-B produced a profound dose-dependent reduction of systemic blood pressure in spontaneously hypertensive rats. At doses of 1, 3, and 30 mg/kg, both compounds induced a reduction in blood pressure of approximately 10, 20, and 50 mm Hg. In addition, administration of SB-772077-B also dramatically lowered blood pressure in DOCA salt-induced hypertensive rats. SB-772077-B and GSK269962A represent a novel class of ROCK inhibitors that have profound effects in the vasculature and may enable us to further evaluate the potential beneficial effects of ROCK inhibition in animal models of cardiovascular as well as other chronic diseases.
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: PRKCQ
|
None
|
630.96
nM
|
|
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: PRKCQ
|
None
|
630.96
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: ROCK2
|
None
|
50.12
nM
|
|
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: ROCK2
|
None
|
50.12
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: ABL1
|
None
|
630.96
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: PRKX
|
None
|
50.12
nM
|
|
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: PRKX
|
None
|
50.12
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: ROCK1
|
None
|
31.62
nM
|
|
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: ROCK1
|
None
|
31.62
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: FYN
|
None
|
794.33
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: FLT1
|
None
|
398.11
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: PRKACA
|
None
|
79.43
nM
|
|
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: PRKACA
|
None
|
79.43
nM
|
|
Title : PubChem BioAssay data set
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: CLK4
|
None
|
316.23
nM
|
|
PUBCHEM_BIOASSAY: Navigating the Kinome. (Class of assay: other) Panel member name: CLK4
|
None
|
316.23
nM
|
|
Title : PubChem BioAssay data set
Displacement of fluorescent-ARC-1063 from recombinant bovine PKAc by luminescence intensity assay
|
Bos taurus
|
420.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Conjugates of 5-isoquinolinesulfonylamides and oligo-D-arginine possess high affinity and selectivity towards Rho kinase (ROCK).
Year : 2012
Volume : 22
Issue : 10
First Page : 3425
Last Page : 3430
Authors : Lavogina D, Kalind K, Bredihhina J, Hurt M, Vaasa A, Kasari M, Enkvist E, Raidaru G, Uri A.
Abstract : In the present work, conjugates of 5-isoquinolinesulfonylamides and D-arginine-rich peptides were developed into highly potent inhibitors for basophilic protein kinases. Based on Hidaka's inhibitor H9, a generic fluorescent probe ARC-1083 was constructed possessing subnanomolar dissociation constant towards several kinases of the AGC-group. Thereafter, Hidaka's inhibitor HA1077 or Fasudil was conjugated with oligo-D-arginine resulting in the compound ARC-3002 revealing high affinity towards ROCK-II (K(d)=20 pM) and over 160-fold selectivity compared to PKAc.
Displacement of fluorescent-ARC-1063 from His6-tagged recombinant human ROCK2 by luminescence intensity assay
|
Homo sapiens
|
78.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Conjugates of 5-isoquinolinesulfonylamides and oligo-D-arginine possess high affinity and selectivity towards Rho kinase (ROCK).
Year : 2012
Volume : 22
Issue : 10
First Page : 3425
Last Page : 3430
Authors : Lavogina D, Kalind K, Bredihhina J, Hurt M, Vaasa A, Kasari M, Enkvist E, Raidaru G, Uri A.
Abstract : In the present work, conjugates of 5-isoquinolinesulfonylamides and D-arginine-rich peptides were developed into highly potent inhibitors for basophilic protein kinases. Based on Hidaka's inhibitor H9, a generic fluorescent probe ARC-1083 was constructed possessing subnanomolar dissociation constant towards several kinases of the AGC-group. Thereafter, Hidaka's inhibitor HA1077 or Fasudil was conjugated with oligo-D-arginine resulting in the compound ARC-3002 revealing high affinity towards ROCK-II (K(d)=20 pM) and over 160-fold selectivity compared to PKAc.
Inhibition of ROCK2 (unknown origin)
|
Homo sapiens
|
158.0
nM
|
|
Journal : Eur. J. Med. Chem.
Title : Advances in the studies of roles of Rho/Rho-kinase in diseases and the development of its inhibitors.
Year : 2013
Volume : 70
First Page : 613
Last Page : 622
Authors : Guan R, Xu X, Chen M, Hu H, Ge H, Wen S, Zhou S, Pi R.
Abstract : RhoA/Rho-kinase pathway plays a pivotal role in numerous fundamental cellular functions including contraction, motility, proliferation, differentiation and apoptosis. The pathway is also involved in the development of many diseases such as vasospasm, pulmonary hypertension, cancer and central nervous systems (CNS) disorders. The inhibitors of Rho kinase have been extensively studied since the Rho/Rho-kinase pathway was verified as a target for a number of diseases. Herein, we reviewed the advances in the studies of the roles of Rho/Rho-kinase in diseases and the development of Rho-kinase inhibitors in recent five years.
Inhibition of ROCK1 (unknown origin)
|
Homo sapiens
|
260.0
nM
|
|
Journal : MedChemComm
Title : Pyridylthiazole-based ureas as inhibitors of Rho associated protein kinases (ROCK1 and 2).
Year : 2012
Volume : 3
Issue : 6
First Page : 699
Last Page : 709
Authors : Pireddu R, Forinash KD, Sun NN, Martin MP, Sung SS, Alexander B, Zhu JY, Guida WC, Schönbrunn E, Sebti SM, Lawrence NJ.
Abstract : Potent ROCK inhibitors of a new class of 1-benzyl-3-(4-pyridylthiazol-2-yl)ureas have been identified. Remarkable differences in activity were observed for ureas bearing a benzylic stereogenic center. Derivatives with hydroxy, methoxy and amino groups at the meta position of the phenyl ring give rise to the most potent inhibitors (low nM). Substitutions at the para position result in substantial loss of potency. Changes at the benzylic position are tolerated resulting in significant potency in the case of methyl and methylenehydroxy groups. X-Ray crystallography was used to establish the binding mode of this class of inhibitors and provides an explanation for the observed differences of the enantiomer series. Potent inhibition of ROCK in human lung cancer cells was shown by suppression of the levels of phosphorylation of the ROCK substrate MYPT-1.
Inhibition of ROCK2 (unknown origin)
|
Homo sapiens
|
320.0
nM
|
|
Journal : MedChemComm
Title : Pyridylthiazole-based ureas as inhibitors of Rho associated protein kinases (ROCK1 and 2).
Year : 2012
Volume : 3
Issue : 6
First Page : 699
Last Page : 709
Authors : Pireddu R, Forinash KD, Sun NN, Martin MP, Sung SS, Alexander B, Zhu JY, Guida WC, Schönbrunn E, Sebti SM, Lawrence NJ.
Abstract : Potent ROCK inhibitors of a new class of 1-benzyl-3-(4-pyridylthiazol-2-yl)ureas have been identified. Remarkable differences in activity were observed for ureas bearing a benzylic stereogenic center. Derivatives with hydroxy, methoxy and amino groups at the meta position of the phenyl ring give rise to the most potent inhibitors (low nM). Substitutions at the para position result in substantial loss of potency. Changes at the benzylic position are tolerated resulting in significant potency in the case of methyl and methylenehydroxy groups. X-Ray crystallography was used to establish the binding mode of this class of inhibitors and provides an explanation for the observed differences of the enantiomer series. Potent inhibition of ROCK in human lung cancer cells was shown by suppression of the levels of phosphorylation of the ROCK substrate MYPT-1.
Inhibition of human leukocytic ROCK1 expressed in insect cells using KKRNRTLSV as substrate after 10 mins by pyruvate kinase/lactate dehydrogenase coupled assay
|
Homo sapiens
|
530.0
nM
|
|
Journal : J. Med. Chem.
Title : Design, Synthesis, and Structure-Activity Relationships of Pyridine-Based Rho Kinase (ROCK) Inhibitors.
Year : 2015
Volume : 58
Issue : 12
First Page : 5028
Last Page : 5037
Authors : Green J, Cao J, Bandarage UK, Gao H, Court J, Marhefka C, Jacobs M, Taslimi P, Newsome D, Nakayama T, Shah S, Rodems S.
Abstract : The Rho kinases (ROCK1 and ROCK2) are highly homologous serine/threonine kinases that act on substrates associated with cellular motility, morphology, and contraction and are of therapeutic interest in diseases associated with cellular migration and contraction, such as hypertension, glaucoma, and erectile dysfunction. Beginning with compound 4, an inhibitor of ROCK1 identified through high-throughput screening, systematic exploration of SAR, and application of structure-based design, led to potent and selective ROCK inhibitors. Compound 37 represents significant improvements in inhibition potency, kinase selectivity, and CYP inhibition and possesses pharmacokinetics suitable for in vivo experimentation.
Inhibition of ROCK1 (unknown origin)
|
Homo sapiens
|
260.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of Molecular Therapeutics for Glaucoma: Challenges, Successes, and Promising Directions.
Year : 2016
Volume : 59
Issue : 3
First Page : 788
Last Page : 809
Authors : Donegan RK, Lieberman RL.
Abstract : Glaucoma, a heterogeneous ocular disorder affecting ∼60 million people worldwide, is characterized by painless neurodegeneration of retinal ganglion cells (RGCs), resulting in irreversible vision loss. Available therapies, which decrease the common causal risk factor of elevated intraocular pressure, delay, but cannot prevent, RGC death and blindness. Notably, it is changes in the anterior segment of the eye, particularly in the drainage of aqueous humor fluid, which are believed to bring about changes in pressure. Thus, it is primarily this region whose properties are manipulated in current and emerging therapies for glaucoma. Here, we focus on the challenges associated with developing treatments, review the available experimental methods to evaluate the therapeutic potential of new drugs, describe the development and evaluation of emerging Rho-kinase inhibitors and adenosine receptor ligands that offer the potential to improve aqueous humor outflow and protect RGCs simultaneously, and present new targets and approaches on the horizon.
Inhibition of ROCK2 (unknown origin)
|
Homo sapiens
|
320.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of Molecular Therapeutics for Glaucoma: Challenges, Successes, and Promising Directions.
Year : 2016
Volume : 59
Issue : 3
First Page : 788
Last Page : 809
Authors : Donegan RK, Lieberman RL.
Abstract : Glaucoma, a heterogeneous ocular disorder affecting ∼60 million people worldwide, is characterized by painless neurodegeneration of retinal ganglion cells (RGCs), resulting in irreversible vision loss. Available therapies, which decrease the common causal risk factor of elevated intraocular pressure, delay, but cannot prevent, RGC death and blindness. Notably, it is changes in the anterior segment of the eye, particularly in the drainage of aqueous humor fluid, which are believed to bring about changes in pressure. Thus, it is primarily this region whose properties are manipulated in current and emerging therapies for glaucoma. Here, we focus on the challenges associated with developing treatments, review the available experimental methods to evaluate the therapeutic potential of new drugs, describe the development and evaluation of emerging Rho-kinase inhibitors and adenosine receptor ligands that offer the potential to improve aqueous humor outflow and protect RGCs simultaneously, and present new targets and approaches on the horizon.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
152.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
841.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
99.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
247.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
906.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
943.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Inhibition of ROCK2 (unknown origin) at 0.5 mM after 30 mins by immunoassay relative to control
|
Homo sapiens
|
32.33
%
|
|
Journal : Bioorg Med Chem
Title : Design and synthesis of benzimidazole-based Rho kinase inhibitors for the treatment of glaucoma.
Year : 2017
Volume : 25
Issue : 21
First Page : 6071
Last Page : 6085
Authors : Abbhi V, Saini L, Mishra S, Sethi G, Kumar AP, Piplani P.
Abstract : Rho kinase inhibitors (ROCK II) play a key role in glaucoma management attributed to their IOP lowering ability and neuroprotective effects. In the present study, a series of novel benzimidazole derivatives (9a-m) has been synthesized and evaluated for their IOP lowering, Rho kinase inhibitory and antioxidant properties. The synthesized compounds were found to be lipophilic and showed a significant IOP lowering effect both in the treated and the contralateral eye comparable to the reference standard fasudil. The nitrophenyl piperazine substituted compound 9j exhibited significant IOP lowering (51.56%) and an inhibition of 57.25 and 77.92% towards ROCK II enzyme at a concentration of 0.5 and 1 mM respectively. It possessed a considerable free radical scavenging activity exhibiting an IC50 value of 95.49 µg/mL in DPPH assay. The molecular docking studies of compound 9j indicated the binding of the compound at the active site of recombinant human ROCK II which makes it a promising antiglaucoma agent.
Inhibition of ROCK2 (unknown origin) at 1 mM after 30 mins by immunoassay relative to control
|
Homo sapiens
|
52.5
%
|
|
Journal : Bioorg Med Chem
Title : Design and synthesis of benzimidazole-based Rho kinase inhibitors for the treatment of glaucoma.
Year : 2017
Volume : 25
Issue : 21
First Page : 6071
Last Page : 6085
Authors : Abbhi V, Saini L, Mishra S, Sethi G, Kumar AP, Piplani P.
Abstract : Rho kinase inhibitors (ROCK II) play a key role in glaucoma management attributed to their IOP lowering ability and neuroprotective effects. In the present study, a series of novel benzimidazole derivatives (9a-m) has been synthesized and evaluated for their IOP lowering, Rho kinase inhibitory and antioxidant properties. The synthesized compounds were found to be lipophilic and showed a significant IOP lowering effect both in the treated and the contralateral eye comparable to the reference standard fasudil. The nitrophenyl piperazine substituted compound 9j exhibited significant IOP lowering (51.56%) and an inhibition of 57.25 and 77.92% towards ROCK II enzyme at a concentration of 0.5 and 1 mM respectively. It possessed a considerable free radical scavenging activity exhibiting an IC50 value of 95.49 µg/mL in DPPH assay. The molecular docking studies of compound 9j indicated the binding of the compound at the active site of recombinant human ROCK II which makes it a promising antiglaucoma agent.
Inhibition of oxytocin-induced uterus contraction in non-pregnant Sprague-Dawley rat measured for 300 secs
|
Rattus norvegicus
|
781.0
nM
|
|
Journal : Bioorg Med Chem Lett
Title : Effects of newly synthetized isoquinoline derivatives on rat uterine contractility and ROCK II activity.
Year : 2018
Volume : 28
Issue : 3
First Page : 466
Last Page : 469
Authors : Domokos D, Fülöp F, Falkay G, Gáspár R.
Abstract : Protein kinases have an important role in signal transduction in the cellular system via protein phosphorylation. RhoA activated Rho-kinases have a pivotal role in the regulation of smooth muscle contraction. ROCK I and ROCK II phosphorylate myosin-phosphatase and myosin-kinase, which induces contraction in the myometrium. Several studies have investigated the affinity of isoquinoline alkaloids (HA-1077, H1152P) to Rho-kinases, and these compounds notably inhibited the Ca2+-independent process. We measured the efficiency of 25 original, newly synthesized isoquinoline derivatives for the Rho-kinase activity using Rho-associated kinase activity assay and determined their effects on the non-pregnant, 20-day pregnant and parturient rat myometrial contraction in vitro. The IC50 values of 11 from among the 25 derivatives were significantly lower on the oxytocin-induced non-pregnant rat uterine contraction compared with Y-27632 and fasudil, although their maximal inhibitory effects were weaker than those of Y-27632 and fasudil. We measured the effects of 11 isoquinoline molecules with significant IC50 values on ROCK II activity. We found two isoquinolines out of 11 compounds (218 and 852) which decreased the active ROCK II level similarly as Y-27632. Then we found that 218 and 852 relaxed the 20th-day pregnant and parturient rat uterus with greater potency as compared with fasudil. The majority of the synthesized isoquinoline derivatives have uterus relaxant effects and two of them significantly suppress the Rho-kinase mediated myosin light chain phosphorylation. Our results may suggest that the isoquinoline structure has a promising prospect for the development of new and effective inhibitors of uterine contractions in preterm birth.
Inhibition of ROCK (unknown origin)
|
Homo sapiens
|
330.0
nM
|
|
Journal : Eur J Med Chem
Title : Potently inhibiting cancer cell migration with novel 3H-pyrazolo[4,3-f]quinoline boronic acid ROCK inhibitors.
Year : 2019
Volume : 180
First Page : 449
Last Page : 456
Authors : Dayal N, Mikek CG, Hernandez D, Naclerio GA, Yin Chu EF, Carter-Cooper BA, Lapidus RG, Sintim HO.
Abstract : Rho-associated protein kinases (ROCKs) are ubiquitously expressed in most adult tissues, and are involved in modulating the cytoskeleton, protein synthesis and degradation pathways, synaptic function, and autophagy to list a few. A few ROCK inhibitors, such as fasudil and netarsudil, are approved for clinical use. Here we present a new ROCK inhibitor, boronic acid containing HSD1590, which is more potent than netarsudil at binding to or inhibiting ROCK enzymatic activities. This compound exhibits single digit nanomolar binding to ROCK (Kds < 2 nM) and subnanomolar enzymatic inhibition profile (ROCK2 IC50 is 0.5 nM for HSD1590. Netarsudil, an FDA-approved drug, inhibited ROCK2 with IC50 = 11 nM under similar conditions). Whereas netarsudil was cytotoxic to breast cancer cell line, MDA-MB-231 (greater than 80% growth inhibition at concentrations greater than 5 μM), HSD1590 displayed low cytotoxicity to MDA-MB-231. Interestingly, at 1 μM HSD1590 inhibited the migration of MDA-MB-231 whereas netarsudil did not.
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
22.54
%
|
|
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
19.49
%
|
|
Title : Identification of inhibitors of SARS-Cov2 M-Pro enzymatic activity using a small molecule repurposing screen
Year : 2020
Authors : Maria Kuzikov, Elisa Costanzi, Jeanette Reinshagen, Francesca Esposito, Laura Vangeel, Markus Wolf, Bernhard Ellinger, Carsten Claussen, Gerd Geisslinger, Angela Corona, Daniela Iaconis, Carmine Talarico, Candida Manelfi, Rolando Cannalire, Giulia Rossetti, Jonas Gossen, Simone Albani, Francesco Musiani, Katja Herzog, Yang Ye, Barbara Giabbai, Nicola Demitri, Dirk Jochmans, Steven De Jonghe, Jasper Rymenants, Vincenzo Summa, Enzo Tramontano, Andrea R. Beccari, Pieter Leyssen, Paola Storici, Johan Neyts, Philip Gribbon, and Andrea Zaliani
Abstract : Compound repurposing is an important strategy being pursued in the identification of effective treatment against the SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (M-Pro), also termed 3CL-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyprotein into 11 non-structural proteins. We report the results of a screening campaign involving ca 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and chemicals regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, but we have also identified 68 compounds with IC50 lower than 1 uM and 127 compounds with IC50 lower than 5 uM. Profiling showed 67% of confirmed hits were selective (> 5 fold) against other Cys- and Ser- proteases (Chymotrypsin and Cathepsin-L) and MERS 3CL-Pro. Selected compounds were also analysed in their binding characteristics.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
-0.01
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
0.03
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
0.03
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
-0.01
%
|
|
Title : Cytopathic SARS-Cov2 screening on VERO-E6 cells in a large repurposing effort
Year : 2020
Authors : Andrea Zaliani, Laura Vangeel, Jeanette Reinshagen, Daniela Iaconis, Maria Kuzikov, Oliver Keminer, Markus Wolf, Bernhard Ellinger, Francesca Esposito, Angela Corona, Enzo Tramontano, Candida Manelfi, Katja Herzog, Dirk Jochmans, Steven De Jonghe, Winston Chiu, Thibault Francken, Joost Schepers, Caroline Collard, Kayvan Abbasi, Carsten Claussen , Vincenzo Summa, Andrea R. Beccari, Johan Neyts, Philip Gribbon and Pieter Leyssen
Abstract : Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.
Inhibition of ROCK2 (unknown origin)
|
Homo sapiens
|
320.0
nM
|
|
Journal : J Med Chem
Title : Ocular Disease Therapeutics: Design and Delivery of Drugs for Diseases of the Eye.
Year : 2020
Volume : 63
Issue : 19.0
First Page : 10533
Last Page : 10593
Authors : Cheng KJ,Hsieh CM,Nepali K,Liou JP
Abstract : The ocular drug discovery field has evidenced significant advancement in the past decade. The FDA approvals of Rhopressa, Vyzulta, and Roclatan for glaucoma, Brolucizumab for wet age-related macular degeneration (wet AMD), Luxturna for retinitis pigmentosa, Dextenza (0.4 mg dexamethasone intracanalicular insert) for ocular inflammation, ReSure sealant to seal corneal incisions, and Lifitegrast for dry eye represent some of the major developments in the field of ocular therapeutics. A literature survey also indicates that gene therapy, stem cell therapy, and target discovery through genomic research represent significant promise as potential strategies to achieve tissue repair or regeneration and to attain therapeutic benefits in ocular diseases. Overall, the emergence of new technologies coupled with first-in-class entries in ophthalmology are highly anticipated to restructure and boost the future trends in the field of ophthalmic drug discovery. This perspective focuses on various aspects of ocular drug discovery and the recent advances therein. Recent medicinal chemistry campaigns along with a brief overview of the structure-activity relationships of the diverse chemical classes and developments in ocular drug delivery (ODD) are presented.
Inhibition of ROCK1 (unknown origin)
|
Homo sapiens
|
260.0
nM
|
|
Journal : J Med Chem
Title : Ocular Disease Therapeutics: Design and Delivery of Drugs for Diseases of the Eye.
Year : 2020
Volume : 63
Issue : 19.0
First Page : 10533
Last Page : 10593
Authors : Cheng KJ,Hsieh CM,Nepali K,Liou JP
Abstract : The ocular drug discovery field has evidenced significant advancement in the past decade. The FDA approvals of Rhopressa, Vyzulta, and Roclatan for glaucoma, Brolucizumab for wet age-related macular degeneration (wet AMD), Luxturna for retinitis pigmentosa, Dextenza (0.4 mg dexamethasone intracanalicular insert) for ocular inflammation, ReSure sealant to seal corneal incisions, and Lifitegrast for dry eye represent some of the major developments in the field of ocular therapeutics. A literature survey also indicates that gene therapy, stem cell therapy, and target discovery through genomic research represent significant promise as potential strategies to achieve tissue repair or regeneration and to attain therapeutic benefits in ocular diseases. Overall, the emergence of new technologies coupled with first-in-class entries in ophthalmology are highly anticipated to restructure and boost the future trends in the field of ophthalmic drug discovery. This perspective focuses on various aspects of ocular drug discovery and the recent advances therein. Recent medicinal chemistry campaigns along with a brief overview of the structure-activity relationships of the diverse chemical classes and developments in ocular drug delivery (ODD) are presented.
Inhibition of ROCK2 (unknown origin)
|
Homo sapiens
|
220.0
nM
|
|
Journal : Bioorg Med Chem Lett
Title : Identification of 5H-chromeno[3,4-c]pyridine and 6H-isochromeno[3,4-c]pyridine derivatives as potent and selective dual ROCK inhibitors.
Year : 2020
Volume : 30
Issue : 21.0
First Page : 127474
Last Page : 127474
Authors : Hu Z,Wang C,Sitkoff D,Cheadle NL,Xu S,Muckelbauer JK,Adam LP,Wexler RR,Quan ML
Abstract : A novel series of 5H-chromeno[3,4-c]pyridine, 6H-isochromeno[3,4-c]pyridine and 6H-isochromeno[4,3-d]pyrimidine derivatives as dual ROCK1 and ROCK2 inhibitors is described. Optimization led to compounds with sub-nanomolar inhibitory affinity for both kinases and excellent kinome selectivity. Compound 19 exhibited ROCK1 and ROCK2 IC of 0.67 nM and 0.18 nM respectively.
Inhibition of ROCK1 (unknown origin)
|
Homo sapiens
|
940.0
nM
|
|
Journal : Bioorg Med Chem Lett
Title : Identification of 5H-chromeno[3,4-c]pyridine and 6H-isochromeno[3,4-c]pyridine derivatives as potent and selective dual ROCK inhibitors.
Year : 2020
Volume : 30
Issue : 21.0
First Page : 127474
Last Page : 127474
Authors : Hu Z,Wang C,Sitkoff D,Cheadle NL,Xu S,Muckelbauer JK,Adam LP,Wexler RR,Quan ML
Abstract : A novel series of 5H-chromeno[3,4-c]pyridine, 6H-isochromeno[3,4-c]pyridine and 6H-isochromeno[4,3-d]pyrimidine derivatives as dual ROCK1 and ROCK2 inhibitors is described. Optimization led to compounds with sub-nanomolar inhibitory affinity for both kinases and excellent kinome selectivity. Compound 19 exhibited ROCK1 and ROCK2 IC of 0.67 nM and 0.18 nM respectively.