Compound is evaluated for in vitro receptor binding affinity against 5-hydroxytryptamine 1A receptor
|
Cavia porcellus
|
47.0
nM
|
|
Journal : J. Med. Chem.
Title : New antihistamines: substituted piperazine and piperidine derivatives as novel H1-antagonists.
Year : 1995
Volume : 38
Issue : 20
First Page : 4026
Last Page : 4032
Authors : Abou-Gharbia M, Moyer JA, Nielsen ST, Webb M, Patel U.
Abstract : Structural manipulation of polycyclic piperazinyl imide serotonergic agents led to the synthesis of compound 8, 2-[4-[4-[bis(4-fluorophenyl)methyl]-1-piperazinyl]-4, 4a,5,5a,6,6a-hexahydro-4,6-ethenocycloprop[f]isoindole-1,3(2H,3 aH)-dione, which demonstrated good H1-antagonist activity. Substitution of a xanthinyl moiety for the polycyclic imide group led to the identification of novel xanthinyl-substituted piperazinyl and piperidinyl derivatives with potent antihistamine H1-activity without the undesirable antidopaminergic activity of 8. One compound, 24, 7-[3-[4-(diphenylmethoxy)-1-piperidinyl]propyl]- 3,7-dihydro-1,3-dimethyl-1H-pyrine-2,6-dione (WY-49051), is a potent, orally active H1-antagonist with a long duration of action and a favorable central nervous system profile.
Dissociation constant (KD) of the compound
|
None
|
4.0
nM
|
|
Journal : J. Med. Chem.
Title : New antihistamines: substituted piperazine and piperidine derivatives as novel H1-antagonists.
Year : 1995
Volume : 38
Issue : 20
First Page : 4026
Last Page : 4032
Authors : Abou-Gharbia M, Moyer JA, Nielsen ST, Webb M, Patel U.
Abstract : Structural manipulation of polycyclic piperazinyl imide serotonergic agents led to the synthesis of compound 8, 2-[4-[4-[bis(4-fluorophenyl)methyl]-1-piperazinyl]-4, 4a,5,5a,6,6a-hexahydro-4,6-ethenocycloprop[f]isoindole-1,3(2H,3 aH)-dione, which demonstrated good H1-antagonist activity. Substitution of a xanthinyl moiety for the polycyclic imide group led to the identification of novel xanthinyl-substituted piperazinyl and piperidinyl derivatives with potent antihistamine H1-activity without the undesirable antidopaminergic activity of 8. One compound, 24, 7-[3-[4-(diphenylmethoxy)-1-piperidinyl]propyl]- 3,7-dihydro-1,3-dimethyl-1H-pyrine-2,6-dione (WY-49051), is a potent, orally active H1-antagonist with a long duration of action and a favorable central nervous system profile.
pA2 value is determined compared to standard H1-antagonists
|
None
|
39.81
nM
|
|
Journal : J. Med. Chem.
Title : New antihistamines: substituted piperazine and piperidine derivatives as novel H1-antagonists.
Year : 1995
Volume : 38
Issue : 20
First Page : 4026
Last Page : 4032
Authors : Abou-Gharbia M, Moyer JA, Nielsen ST, Webb M, Patel U.
Abstract : Structural manipulation of polycyclic piperazinyl imide serotonergic agents led to the synthesis of compound 8, 2-[4-[4-[bis(4-fluorophenyl)methyl]-1-piperazinyl]-4, 4a,5,5a,6,6a-hexahydro-4,6-ethenocycloprop[f]isoindole-1,3(2H,3 aH)-dione, which demonstrated good H1-antagonist activity. Substitution of a xanthinyl moiety for the polycyclic imide group led to the identification of novel xanthinyl-substituted piperazinyl and piperidinyl derivatives with potent antihistamine H1-activity without the undesirable antidopaminergic activity of 8. One compound, 24, 7-[3-[4-(diphenylmethoxy)-1-piperidinyl]propyl]- 3,7-dihydro-1,3-dimethyl-1H-pyrine-2,6-dione (WY-49051), is a potent, orally active H1-antagonist with a long duration of action and a favorable central nervous system profile.
Compound is evaluated for in vitro receptor binding affinity against Alpha-1 adrenergic receptor
|
Cavia porcellus
|
183.0
nM
|
|
Journal : J. Med. Chem.
Title : New antihistamines: substituted piperazine and piperidine derivatives as novel H1-antagonists.
Year : 1995
Volume : 38
Issue : 20
First Page : 4026
Last Page : 4032
Authors : Abou-Gharbia M, Moyer JA, Nielsen ST, Webb M, Patel U.
Abstract : Structural manipulation of polycyclic piperazinyl imide serotonergic agents led to the synthesis of compound 8, 2-[4-[4-[bis(4-fluorophenyl)methyl]-1-piperazinyl]-4, 4a,5,5a,6,6a-hexahydro-4,6-ethenocycloprop[f]isoindole-1,3(2H,3 aH)-dione, which demonstrated good H1-antagonist activity. Substitution of a xanthinyl moiety for the polycyclic imide group led to the identification of novel xanthinyl-substituted piperazinyl and piperidinyl derivatives with potent antihistamine H1-activity without the undesirable antidopaminergic activity of 8. One compound, 24, 7-[3-[4-(diphenylmethoxy)-1-piperidinyl]propyl]- 3,7-dihydro-1,3-dimethyl-1H-pyrine-2,6-dione (WY-49051), is a potent, orally active H1-antagonist with a long duration of action and a favorable central nervous system profile.
Compound is evaluated for in vitro receptor binding affinity against Dopamine receptor D2
|
Cavia porcellus
|
61.0
nM
|
|
Journal : J. Med. Chem.
Title : New antihistamines: substituted piperazine and piperidine derivatives as novel H1-antagonists.
Year : 1995
Volume : 38
Issue : 20
First Page : 4026
Last Page : 4032
Authors : Abou-Gharbia M, Moyer JA, Nielsen ST, Webb M, Patel U.
Abstract : Structural manipulation of polycyclic piperazinyl imide serotonergic agents led to the synthesis of compound 8, 2-[4-[4-[bis(4-fluorophenyl)methyl]-1-piperazinyl]-4, 4a,5,5a,6,6a-hexahydro-4,6-ethenocycloprop[f]isoindole-1,3(2H,3 aH)-dione, which demonstrated good H1-antagonist activity. Substitution of a xanthinyl moiety for the polycyclic imide group led to the identification of novel xanthinyl-substituted piperazinyl and piperidinyl derivatives with potent antihistamine H1-activity without the undesirable antidopaminergic activity of 8. One compound, 24, 7-[3-[4-(diphenylmethoxy)-1-piperidinyl]propyl]- 3,7-dihydro-1,3-dimethyl-1H-pyrine-2,6-dione (WY-49051), is a potent, orally active H1-antagonist with a long duration of action and a favorable central nervous system profile.
Compound is evaluated for in vitro receptor binding affinity against H1 receptor
|
Cavia porcellus
|
45.0
nM
|
|
Journal : J. Med. Chem.
Title : New antihistamines: substituted piperazine and piperidine derivatives as novel H1-antagonists.
Year : 1995
Volume : 38
Issue : 20
First Page : 4026
Last Page : 4032
Authors : Abou-Gharbia M, Moyer JA, Nielsen ST, Webb M, Patel U.
Abstract : Structural manipulation of polycyclic piperazinyl imide serotonergic agents led to the synthesis of compound 8, 2-[4-[4-[bis(4-fluorophenyl)methyl]-1-piperazinyl]-4, 4a,5,5a,6,6a-hexahydro-4,6-ethenocycloprop[f]isoindole-1,3(2H,3 aH)-dione, which demonstrated good H1-antagonist activity. Substitution of a xanthinyl moiety for the polycyclic imide group led to the identification of novel xanthinyl-substituted piperazinyl and piperidinyl derivatives with potent antihistamine H1-activity without the undesirable antidopaminergic activity of 8. One compound, 24, 7-[3-[4-(diphenylmethoxy)-1-piperidinyl]propyl]- 3,7-dihydro-1,3-dimethyl-1H-pyrine-2,6-dione (WY-49051), is a potent, orally active H1-antagonist with a long duration of action and a favorable central nervous system profile.
Inhibition of human ERG
|
Homo sapiens
|
331.13
nM
|
|
Journal : Eur. J. Med. Chem.
Title : Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model.
Year : 2011
Volume : 46
Issue : 2
First Page : 618
Last Page : 630
Authors : Sinha N, Sen S.
Abstract : A QSAR based predictive model of hERG activity in terms of 'global descriptors' has been developed and evaluated. The QSAR was developed by training 77 compounds covering a wide range of activities and was validated based on an external 'test set' of 80 compounds using neural network method. Statistical parameters and examination of enrichment factor indicated the effectiveness of the present model. Randomization test demonstrated the robustness of the model and cross-validation test further validated the QSAR. Domain of applicability test indicated to the high degree of reliability of the predicted results. Satisfactory performance in classifying compounds into 'active' and 'inactive' groups was also obtained. The cases where the QSAR failed, the possible sources of errors have been discussed.
DRUGMATRIX: Muscarinic M1 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
420.3
nM
|
|
DRUGMATRIX: Muscarinic M1 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
101.2
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Muscarinic M2 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
786.0
nM
|
|
DRUGMATRIX: Muscarinic M2 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
279.5
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Muscarinic M3 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
647.5
nM
|
|
DRUGMATRIX: Muscarinic M3 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
137.2
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Muscarinic M4 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
827.9
nM
|
|
DRUGMATRIX: Muscarinic M4 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
115.5
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Muscarinic M5 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
337.8
nM
|
|
DRUGMATRIX: Muscarinic M5 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
242.7
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Potassium Channel HERG radioligand binding (ligand: [3H] Astemizole)
|
None
|
104.8
nM
|
|
DRUGMATRIX: Potassium Channel HERG radioligand binding (ligand: [3H] Astemizole)
|
None
|
85.8
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Protein Tyrosine Kinase, EGF Receptor enzyme inhibition (substrate: Poly(Glu:Tyr))
|
None
|
559.1
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Protein Tyrosine Kinase, Fyn enzyme inhibition (substrate: Poly(Glu:Tyr))
|
None
|
810.1
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2A radioligand binding (ligand: [3H] Ketanserin)
|
None
|
90.4
nM
|
|
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2A radioligand binding (ligand: [3H] Ketanserin)
|
None
|
25.8
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Alpha-1B adrenergic receptor radioligand binding (ligand: prazosin)
|
Rattus norvegicus
|
420.7
nM
|
|
DRUGMATRIX: Alpha-1B adrenergic receptor radioligand binding (ligand: prazosin)
|
Rattus norvegicus
|
232.9
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Alpha-1D adrenergic receptor radioligand binding (ligand: prazosin)
|
None
|
870.6
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Alpha-2A adrenergic receptor radioligand binding (ligand: MK-912)
|
None
|
831.6
nM
|
|
DRUGMATRIX: Alpha-2A adrenergic receptor radioligand binding (ligand: MK-912)
|
None
|
311.9
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Alpha-2B adrenergic receptor radioligand binding (ligand: Rauwolscine)
|
None
|
738.9
nM
|
|
DRUGMATRIX: Alpha-2B adrenergic receptor radioligand binding (ligand: Rauwolscine)
|
None
|
337.3
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Adrenergic Alpha-2C radioligand binding (ligand: [3H] MK-912)
|
None
|
275.7
nM
|
|
DRUGMATRIX: Adrenergic Alpha-2C radioligand binding (ligand: [3H] MK-912)
|
None
|
40.1
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Norepinephrine Transporter radioligand binding (ligand: [125I] RTI-55)
|
None
|
460.3
nM
|
|
DRUGMATRIX: Norepinephrine Transporter radioligand binding (ligand: [125I] RTI-55)
|
None
|
456.4
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Calcium Channel Type L, Benzothiazepine radioligand binding (ligand: [3H] Diltiazem)
|
Rattus norvegicus
|
65.3
nM
|
|
DRUGMATRIX: Calcium Channel Type L, Benzothiazepine radioligand binding (ligand: [3H] Diltiazem)
|
Rattus norvegicus
|
58.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Calcium Channel Type L, Dihydropyridine radioligand binding (ligand: [3H] Nitrendipine)
|
Rattus norvegicus
|
143.6
nM
|
|
DRUGMATRIX: Calcium Channel Type L, Dihydropyridine radioligand binding (ligand: [3H] Nitrendipine)
|
Rattus norvegicus
|
92.3
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2B radioligand binding (ligand: [3H] Lysergic acid diethylamide)
|
None
|
312.6
nM
|
|
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2B radioligand binding (ligand: [3H] Lysergic acid diethylamide)
|
None
|
198.9
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2C radioligand binding (ligand: [3H] Mesulergine)
|
None
|
237.5
nM
|
|
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2C radioligand binding (ligand: [3H] Mesulergine)
|
None
|
124.4
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Transporter, Serotonin (5-Hydroxytryptamine) (SERT) radioligand binding (ligand: [3H] Paroxetine)
|
None
|
652.8
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Sodium Channel, Site 2 radioligand binding (ligand: [3H] Batrachotoxin)
|
Rattus norvegicus
|
39.5
nM
|
|
DRUGMATRIX: Sodium Channel, Site 2 radioligand binding (ligand: [3H] Batrachotoxin)
|
Rattus norvegicus
|
36.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Tachykinin NK2 radioligand binding (ligand: [3H] SR-48968)
|
None
|
644.3
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Calcium Channel Type L, Phenylalkylamine radioligand binding (ligand: [3H] (-)-Desmethoxyverapamil (D-888))
|
Rattus norvegicus
|
118.5
nM
|
|
DRUGMATRIX: Calcium Channel Type L, Phenylalkylamine radioligand binding (ligand: [3H] (-)-Desmethoxyverapamil (D-888))
|
Rattus norvegicus
|
115.2
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Dopamine D1 radioligand binding (ligand: [3H] SCH-23390)
|
None
|
596.5
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Dopamine D2L radioligand binding (ligand: [3H] Spiperone)
|
None
|
383.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Dopamine D3 radioligand binding (ligand: [3H] Spiperone)
|
None
|
121.6
nM
|
|
DRUGMATRIX: Dopamine D3 radioligand binding (ligand: [3H] Spiperone)
|
None
|
41.3
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Dopamine D4.2 radioligand binding (ligand: [3H] Spiperone)
|
None
|
455.7
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Dopamine Transporter radioligand binding (ligand: [125I] RTI-55)
|
None
|
98.7
nM
|
|
DRUGMATRIX: Dopamine Transporter radioligand binding (ligand: [125I] RTI-55)
|
None
|
78.4
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Histamine H1, Central radioligand binding (ligand: [3H] Pyrilamine)
|
None
|
28.3
nM
|
|
DRUGMATRIX: Histamine H1, Central radioligand binding (ligand: [3H] Pyrilamine)
|
None
|
3.287
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
Inhibition of norA-mediated ethidium bromide efflux in Staphylococcus aureus SA-1199B harboring grlA A116E mutant at 50 uM after 5 mins by fluorometric analysis
|
Staphylococcus aureus
|
88.3
%
|
|
Journal : ACS Med. Chem. Lett.
Title : Ligand Promiscuity between the Efflux Pumps Human P-Glycoprotein and S. aureus NorA.
Year : 2012
Volume : 3
Issue : 3
First Page : 248
Last Page : 251
Authors : Brincat JP, Broccatelli F, Sabatini S, Frosini M, Neri A, Kaatz GW, Cruciani G, Carosati E.
Abstract : Thirty-two diverse compounds were evaluated for their ability to inhibit both Pgp-mediated efflux in mouse T-lymphoma L5178 MDR1 and NorA-mediated efflux in S. aureus SA-1199B. Only four compounds were strong inhibitors of both efflux pumps. Three compounds were found to inhibit Pgp exclusively and strongly, while seven compounds inhibited only NorA. These results demonstrate that Pgp and NorA inhibitors do not necessarily overlap, opening the way to safer therapeutic use of effective NorA inhibitors.
Inhibition of human recombinant MDR1 expressed in mouse L5178Y cells assessed as inhibition of rhodamine-123 efflux at 10'-4 M preincubated for 10 mins measured after 20 mins by FACS analysis
|
Homo sapiens
|
99.0
%
|
|
Journal : ACS Med. Chem. Lett.
Title : Ligand Promiscuity between the Efflux Pumps Human P-Glycoprotein and S. aureus NorA.
Year : 2012
Volume : 3
Issue : 3
First Page : 248
Last Page : 251
Authors : Brincat JP, Broccatelli F, Sabatini S, Frosini M, Neri A, Kaatz GW, Cruciani G, Carosati E.
Abstract : Thirty-two diverse compounds were evaluated for their ability to inhibit both Pgp-mediated efflux in mouse T-lymphoma L5178 MDR1 and NorA-mediated efflux in S. aureus SA-1199B. Only four compounds were strong inhibitors of both efflux pumps. Three compounds were found to inhibit Pgp exclusively and strongly, while seven compounds inhibited only NorA. These results demonstrate that Pgp and NorA inhibitors do not necessarily overlap, opening the way to safer therapeutic use of effective NorA inhibitors.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of Caco-2 cells at 10 uM after 48 hours by high content imaging
|
Homo sapiens
|
-3.03
%
|
|
Title : Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection
Year : 2020
Authors : Bernhard Ellinger, Denisa Bojkova, Andrea Zaliani, Jindrich Cinatl, Carsten Claussen, Sandra Westhaus, Jeanette Reinshagen, Maria Kuzikov, Markus Wolf, Gerd Geisslinger, Philip Gribbon, Sandra Ciesek
Abstract : To identify possible candidates for progression towards clinical studies against SARS-CoV-2, we screened a well-defined collection of 5632 compounds including 3488 compounds which have undergone clinical investigations (marketed drugs, phases 1 -3, and withdrawn) across 600 indications. Compounds were screened for their inhibition of viral induced cytotoxicity using the human epithelial colorectal adenocarcinoma cell line Caco-2 and a SARS-CoV-2 isolate. The primary screen of 5632 compounds gave 271 hits. A total of 64 compounds with IC50 <20 µM were identified, including 19 compounds with IC50 < 1 µM. Of this confirmed hit population, 90% have not yet been previously reported as active against SARS-CoV-2 in-vitro cell assays. Some 37 of the actives are launched drugs, 19 are in phases 1-3 and 10 pre-clinical. Several inhibitors were associated with modulation of host pathways including kinase signaling P53 activation, ubiquitin pathways and PDE activity modulation, with long chain acyl transferases were effective viral inhibitors.
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
8.375
%
|
|
Title : Identification of inhibitors of SARS-Cov2 M-Pro enzymatic activity using a small molecule repurposing screen
Year : 2020
Authors : Maria Kuzikov, Elisa Costanzi, Jeanette Reinshagen, Francesca Esposito, Laura Vangeel, Markus Wolf, Bernhard Ellinger, Carsten Claussen, Gerd Geisslinger, Angela Corona, Daniela Iaconis, Carmine Talarico, Candida Manelfi, Rolando Cannalire, Giulia Rossetti, Jonas Gossen, Simone Albani, Francesco Musiani, Katja Herzog, Yang Ye, Barbara Giabbai, Nicola Demitri, Dirk Jochmans, Steven De Jonghe, Jasper Rymenants, Vincenzo Summa, Enzo Tramontano, Andrea R. Beccari, Pieter Leyssen, Paola Storici, Johan Neyts, Philip Gribbon, and Andrea Zaliani
Abstract : Compound repurposing is an important strategy being pursued in the identification of effective treatment against the SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (M-Pro), also termed 3CL-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyprotein into 11 non-structural proteins. We report the results of a screening campaign involving ca 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and chemicals regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, but we have also identified 68 compounds with IC50 lower than 1 uM and 127 compounds with IC50 lower than 5 uM. Profiling showed 67% of confirmed hits were selective (> 5 fold) against other Cys- and Ser- proteases (Chymotrypsin and Cathepsin-L) and MERS 3CL-Pro. Selected compounds were also analysed in their binding characteristics.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
8.43
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
8.43
%
|
|
Title : Cytopathic SARS-Cov2 screening on VERO-E6 cells in a large repurposing effort
Year : 2020
Authors : Andrea Zaliani, Laura Vangeel, Jeanette Reinshagen, Daniela Iaconis, Maria Kuzikov, Oliver Keminer, Markus Wolf, Bernhard Ellinger, Francesca Esposito, Angela Corona, Enzo Tramontano, Candida Manelfi, Katja Herzog, Dirk Jochmans, Steven De Jonghe, Winston Chiu, Thibault Francken, Joost Schepers, Caroline Collard, Kayvan Abbasi, Carsten Claussen , Vincenzo Summa, Andrea R. Beccari, Johan Neyts, Philip Gribbon and Pieter Leyssen
Abstract : Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.