Compound was tested for its inhibitory activity against 5-hydroxytryptamine receptor
|
Rattus norvegicus
|
200.0
nM
|
|
Journal : J. Med. Chem.
Title : Development of predictive retention-activity relationship models of tricyclic antidepressants by micellar liquid chromatography.
Year : 1999
Volume : 42
Issue : 16
First Page : 3154
Last Page : 3162
Authors : Quiñones-Torrelo C, Sagrado S, Villanueva-Camañas RM, Medina-Hernández MJ.
Abstract : The distribution of tricyclic antidepressants from plasma to brain, where these drugs exert their main clinical action, and other organs is related to transport events across the cell membranes of the different tissues. It could be expected that all the molecular features that condition the transport processes (mainly hydrophobicity and molar total charge) also control the pharmacokinetic and biochemical behavior. Micellar liquid chromatography (MLC) has been proposed to emulate in vitro the partitioning process in the biomembranes. The use of micellar solutions of Brij35 as mobile phases in reversed-phase liquid chromatography has proven to be valid to predict the biological activities of local anesthetics, barbiturates, catecholamines, and benzodiazepines. In this paper, the relationships between the capacity factor in MLC and some pharmacokinetic parameters and biological responses of tricyclic antidepressants are studied. Predictive regression models for the estimation of these parameter values, using the logarithm of the retention data (log k) as independent variable, are also proposed.
Compound was tested for its binding affinity towards brain (Hippocampus) Adenylate cyclase
|
Cavia porcellus
|
170.0
nM
|
|
Journal : J. Med. Chem.
Title : Development of predictive retention-activity relationship models of tricyclic antidepressants by micellar liquid chromatography.
Year : 1999
Volume : 42
Issue : 16
First Page : 3154
Last Page : 3162
Authors : Quiñones-Torrelo C, Sagrado S, Villanueva-Camañas RM, Medina-Hernández MJ.
Abstract : The distribution of tricyclic antidepressants from plasma to brain, where these drugs exert their main clinical action, and other organs is related to transport events across the cell membranes of the different tissues. It could be expected that all the molecular features that condition the transport processes (mainly hydrophobicity and molar total charge) also control the pharmacokinetic and biochemical behavior. Micellar liquid chromatography (MLC) has been proposed to emulate in vitro the partitioning process in the biomembranes. The use of micellar solutions of Brij35 as mobile phases in reversed-phase liquid chromatography has proven to be valid to predict the biological activities of local anesthetics, barbiturates, catecholamines, and benzodiazepines. In this paper, the relationships between the capacity factor in MLC and some pharmacokinetic parameters and biological responses of tricyclic antidepressants are studied. Predictive regression models for the estimation of these parameter values, using the logarithm of the retention data (log k) as independent variable, are also proposed.
Compound was tested for its binding affinity towards brain (neocortex) Adenylate cyclase
|
Cavia porcellus
|
190.0
nM
|
|
Journal : J. Med. Chem.
Title : Development of predictive retention-activity relationship models of tricyclic antidepressants by micellar liquid chromatography.
Year : 1999
Volume : 42
Issue : 16
First Page : 3154
Last Page : 3162
Authors : Quiñones-Torrelo C, Sagrado S, Villanueva-Camañas RM, Medina-Hernández MJ.
Abstract : The distribution of tricyclic antidepressants from plasma to brain, where these drugs exert their main clinical action, and other organs is related to transport events across the cell membranes of the different tissues. It could be expected that all the molecular features that condition the transport processes (mainly hydrophobicity and molar total charge) also control the pharmacokinetic and biochemical behavior. Micellar liquid chromatography (MLC) has been proposed to emulate in vitro the partitioning process in the biomembranes. The use of micellar solutions of Brij35 as mobile phases in reversed-phase liquid chromatography has proven to be valid to predict the biological activities of local anesthetics, barbiturates, catecholamines, and benzodiazepines. In this paper, the relationships between the capacity factor in MLC and some pharmacokinetic parameters and biological responses of tricyclic antidepressants are studied. Predictive regression models for the estimation of these parameter values, using the logarithm of the retention data (log k) as independent variable, are also proposed.
Compound was tested for its inhibitory activity against Alpha-1 adrenergic receptor
|
None
|
0.01
nM
|
|
Journal : J. Med. Chem.
Title : Development of predictive retention-activity relationship models of tricyclic antidepressants by micellar liquid chromatography.
Year : 1999
Volume : 42
Issue : 16
First Page : 3154
Last Page : 3162
Authors : Quiñones-Torrelo C, Sagrado S, Villanueva-Camañas RM, Medina-Hernández MJ.
Abstract : The distribution of tricyclic antidepressants from plasma to brain, where these drugs exert their main clinical action, and other organs is related to transport events across the cell membranes of the different tissues. It could be expected that all the molecular features that condition the transport processes (mainly hydrophobicity and molar total charge) also control the pharmacokinetic and biochemical behavior. Micellar liquid chromatography (MLC) has been proposed to emulate in vitro the partitioning process in the biomembranes. The use of micellar solutions of Brij35 as mobile phases in reversed-phase liquid chromatography has proven to be valid to predict the biological activities of local anesthetics, barbiturates, catecholamines, and benzodiazepines. In this paper, the relationships between the capacity factor in MLC and some pharmacokinetic parameters and biological responses of tricyclic antidepressants are studied. Predictive regression models for the estimation of these parameter values, using the logarithm of the retention data (log k) as independent variable, are also proposed.
Compound tested for its inhibitory activity against Histamine H1 receptor
|
None
|
0.003
nM
|
|
Journal : J. Med. Chem.
Title : Development of predictive retention-activity relationship models of tricyclic antidepressants by micellar liquid chromatography.
Year : 1999
Volume : 42
Issue : 16
First Page : 3154
Last Page : 3162
Authors : Quiñones-Torrelo C, Sagrado S, Villanueva-Camañas RM, Medina-Hernández MJ.
Abstract : The distribution of tricyclic antidepressants from plasma to brain, where these drugs exert their main clinical action, and other organs is related to transport events across the cell membranes of the different tissues. It could be expected that all the molecular features that condition the transport processes (mainly hydrophobicity and molar total charge) also control the pharmacokinetic and biochemical behavior. Micellar liquid chromatography (MLC) has been proposed to emulate in vitro the partitioning process in the biomembranes. The use of micellar solutions of Brij35 as mobile phases in reversed-phase liquid chromatography has proven to be valid to predict the biological activities of local anesthetics, barbiturates, catecholamines, and benzodiazepines. In this paper, the relationships between the capacity factor in MLC and some pharmacokinetic parameters and biological responses of tricyclic antidepressants are studied. Predictive regression models for the estimation of these parameter values, using the logarithm of the retention data (log k) as independent variable, are also proposed.
Compound was tested for its inhibitory activity against Noradrenaline receptor
|
Rattus norvegicus
|
65.0
nM
|
|
Journal : J. Med. Chem.
Title : Development of predictive retention-activity relationship models of tricyclic antidepressants by micellar liquid chromatography.
Year : 1999
Volume : 42
Issue : 16
First Page : 3154
Last Page : 3162
Authors : Quiñones-Torrelo C, Sagrado S, Villanueva-Camañas RM, Medina-Hernández MJ.
Abstract : The distribution of tricyclic antidepressants from plasma to brain, where these drugs exert their main clinical action, and other organs is related to transport events across the cell membranes of the different tissues. It could be expected that all the molecular features that condition the transport processes (mainly hydrophobicity and molar total charge) also control the pharmacokinetic and biochemical behavior. Micellar liquid chromatography (MLC) has been proposed to emulate in vitro the partitioning process in the biomembranes. The use of micellar solutions of Brij35 as mobile phases in reversed-phase liquid chromatography has proven to be valid to predict the biological activities of local anesthetics, barbiturates, catecholamines, and benzodiazepines. In this paper, the relationships between the capacity factor in MLC and some pharmacokinetic parameters and biological responses of tricyclic antidepressants are studied. Predictive regression models for the estimation of these parameter values, using the logarithm of the retention data (log k) as independent variable, are also proposed.
Inhibition of binding of Batrachotoxinin [3H]BTX-B to high affinity sites on voltage dependent sodium channels in a vesicular preparation from guinea pig cerebral cortex at 10 uM
|
Cavia porcellus
|
67.7
%
|
|
Journal : J. Med. Chem.
Title : [3H]Batrachotoxinin A 20 alpha-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs.
Year : 1985
Volume : 28
Issue : 3
First Page : 381
Last Page : 388
Authors : McNeal ET, Lewandowski GA, Daly JW, Creveling CR.
Abstract : [3H]Batrachotoxinin A benzoate ( [3H]BTX-B) binds with high affinity to sites on voltage-dependent sodium channels in a vesicular preparation from guinea pig cerebral cortex. In this preparation, local anesthetics competitively antagonize the binding of [3H]BTX-B. The potencies of some 40 classical local anesthetics and a variety of catecholamine, histamine, serotonin, adenosine, GABA, glycine, acetylcholine, and calcium antagonists, tranquilizers, antidepressants, barbiturates, anticonvulsants, steroids, vasodilators, antiinflammatories, anticoagulants, analgesics, and other agents have been determined. An excellent correlation with the known local anesthetic activity of many of these agents indicate that antagonism of binding of [3H]BTX-B binding provides a rapid, quantitative, and facile method for the screening and investigation of local anesthetic activity.
DRUGMATRIX: Muscarinic M1 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
77.0
nM
|
|
DRUGMATRIX: Muscarinic M1 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
18.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Muscarinic M2 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
258.0
nM
|
|
DRUGMATRIX: Muscarinic M2 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
92.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Muscarinic M3 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
69.0
nM
|
|
DRUGMATRIX: Muscarinic M3 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
15.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Muscarinic M4 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
42.0
nM
|
|
DRUGMATRIX: Muscarinic M4 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
5.842
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Muscarinic M5 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
26.0
nM
|
|
DRUGMATRIX: Muscarinic M5 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
19.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT1A radioligand binding (ligand: [3H] 8-OH-DPAT)
|
None
|
868.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2A radioligand binding (ligand: [3H] Ketanserin)
|
None
|
38.0
nM
|
|
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2A radioligand binding (ligand: [3H] Ketanserin)
|
None
|
11.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Alpha-1A adrenergic receptor radioligand binding (ligand: prazosin)
|
Rattus norvegicus
|
107.0
nM
|
|
DRUGMATRIX: Alpha-1A adrenergic receptor radioligand binding (ligand: prazosin)
|
Rattus norvegicus
|
43.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Alpha-1B adrenergic receptor radioligand binding (ligand: prazosin)
|
Rattus norvegicus
|
60.0
nM
|
|
DRUGMATRIX: Alpha-1B adrenergic receptor radioligand binding (ligand: prazosin)
|
Rattus norvegicus
|
33.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Alpha-1D adrenergic receptor radioligand binding (ligand: prazosin)
|
None
|
118.0
nM
|
|
DRUGMATRIX: Alpha-1D adrenergic receptor radioligand binding (ligand: prazosin)
|
None
|
58.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Alpha-2A adrenergic receptor radioligand binding (ligand: MK-912)
|
None
|
501.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Alpha-2B adrenergic receptor radioligand binding (ligand: Rauwolscine)
|
None
|
71.0
nM
|
|
DRUGMATRIX: Alpha-2B adrenergic receptor radioligand binding (ligand: Rauwolscine)
|
None
|
32.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Adrenergic Alpha-2C radioligand binding (ligand: [3H] MK-912)
|
None
|
150.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Norepinephrine Transporter radioligand binding (ligand: [125I] RTI-55)
|
None
|
29.0
nM
|
|
DRUGMATRIX: Norepinephrine Transporter radioligand binding (ligand: [125I] RTI-55)
|
None
|
29.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2B radioligand binding (ligand: [3H] Lysergic acid diethylamide)
|
None
|
89.0
nM
|
|
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2B radioligand binding (ligand: [3H] Lysergic acid diethylamide)
|
None
|
56.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2C radioligand binding (ligand: [3H] Mesulergine)
|
None
|
46.0
nM
|
|
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2C radioligand binding (ligand: [3H] Mesulergine)
|
None
|
24.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT6 radioligand binding (ligand: [3H] Lysergic acid diethylamide)
|
None
|
320.0
nM
|
|
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT6 radioligand binding (ligand: [3H] Lysergic acid diethylamide)
|
None
|
149.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Transporter, Serotonin (5-Hydroxytryptamine) (SERT) radioligand binding (ligand: [3H] Paroxetine)
|
None
|
42.0
nM
|
|
DRUGMATRIX: Transporter, Serotonin (5-Hydroxytryptamine) (SERT) radioligand binding (ligand: [3H] Paroxetine)
|
None
|
22.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Sigma1 radioligand binding (ligand: [3H] Haloperidol)
|
None
|
631.0
nM
|
|
DRUGMATRIX: Sigma1 radioligand binding (ligand: [3H] Haloperidol)
|
None
|
265.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Calcium Channel Type L, Phenylalkylamine radioligand binding (ligand: [3H] (-)-Desmethoxyverapamil (D-888))
|
Rattus norvegicus
|
535.0
nM
|
|
DRUGMATRIX: Calcium Channel Type L, Phenylalkylamine radioligand binding (ligand: [3H] (-)-Desmethoxyverapamil (D-888))
|
Rattus norvegicus
|
520.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Dopamine D1 radioligand binding (ligand: [3H] SCH-23390)
|
None
|
688.0
nM
|
|
DRUGMATRIX: Dopamine D1 radioligand binding (ligand: [3H] SCH-23390)
|
None
|
344.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Dopamine D3 radioligand binding (ligand: [3H] Spiperone)
|
None
|
473.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Histamine H1, Central radioligand binding (ligand: [3H] Pyrilamine)
|
None
|
0.57
nM
|
|
DRUGMATRIX: Histamine H1, Central radioligand binding (ligand: [3H] Pyrilamine)
|
None
|
0.066
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
Displacement of [3H]mepyramine from human histamine H1 receptor expressed in HEK293 cells after 1 to 1.5 hrs by scintillation counting
|
Homo sapiens
|
0.1778
nM
|
|
Journal : J. Med. Chem.
Title : Crystal structure-based virtual screening for fragment-like ligands of the human histamine H(1) receptor.
Year : 2011
Volume : 54
Issue : 23
First Page : 8195
Last Page : 8206
Authors : de Graaf C, Kooistra AJ, Vischer HF, Katritch V, Kuijer M, Shiroishi M, Iwata S, Shimamura T, Stevens RC, de Esch IJ, Leurs R.
Abstract : The recent crystal structure determinations of druggable class A G protein-coupled receptors (GPCRs) have opened up excellent opportunities in structure-based ligand discovery for this pharmaceutically important protein family. We have developed and validated a customized structure-based virtual fragment screening protocol against the recently determined human histamine H(1) receptor (H(1)R) crystal structure. The method combines molecular docking simulations with a protein-ligand interaction fingerprint (IFP) scoring method. The optimized in silico screening approach was successfully applied to identify a chemically diverse set of novel fragment-like (≤22 heavy atoms) H(1)R ligands with an exceptionally high hit rate of 73%. Of the 26 tested fragments, 19 compounds had affinities ranging from 10 μM to 6 nM. The current study shows the potential of in silico screening against GPCR crystal structures to explore novel, fragment-like GPCR ligand space.
TP_TRANSPORTER: increase in Calcein-AM intracellular accumulation (Calcein-AM: ? uM, Doxepin: 100 uM) in MDR1-expressing MDCKII cells
|
None
|
15.3
%
|
|
Journal : J. Pharmacol. Exp. Ther.
Title : Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs.
Year : 2002
Volume : 303
Issue : 1
First Page : 1029
Last Page : 1037
Authors : Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ, Adkison KK, Polli JW.
Abstract : Membrane permeability and P-glycoprotein (Pgp) can be limiting factors for blood-brain barrier penetration. The objectives of this study were to determine whether there are differences in the in vitro permeability, Pgp substrate profiles, and physicochemical properties of drugs for central nervous system (CNS) and non-CNS indications, and whether these differences are useful criteria in selecting compounds for drug development. Apparent permeability (P(app)) and Pgp substrate profiles for 93 CNS (n = 48) and non-CNS (n = 45) drugs were determined by monolayer efflux. Calcein-AM inhibition assays were used to supplement the efflux results. The CNS set (2 of 48, 4.2%) had a 7-fold lower incidence of passive permeability values <150 nm/s compared with the non-CNS set (13 of 45, 28.9%). The majority of drugs (72.0%, 67 of 93) were not Pgp substrates; however, 49.5% (46 of 93) were positive in the calcein-AM assay when tested at 100 microM. The CNS drug set (n = 7 of 48, 14.6%) had a 3-fold lower incidence of Pgp-mediated efflux than the non-CNS drug set (n = 19 of 45, 42.2%). Analysis of 18 physicochemical properties revealed that the CNS drug set had fewer hydrogen bond donors, fewer positive charges, greater lipophilicity, lower polar surface area, and reduced flexibility compared with the non-CNS group (p < 0.05), properties that enhance membrane permeability. This study on a large, diverse set of marketed compounds clearly demonstrates that permeability, Pgp-mediated efflux, and certain physicochemical properties are factors that differentiate CNS and non-CNS drugs. For CNS delivery, a drug should ideally have an in vitro passive permeability >150 nm/s and not be a good (B --> A/A --> B ratio <2.5) Pgp substrate.
Displacement of [3H]LSD from human 5HT6 receptor expressed in HEK293 cells after 1.5 hrs by liquid scintillation counting
|
Homo sapiens
|
105.0
nM
|
|
Journal : J. Med. Chem.
Title : Chemocentric informatics approach to drug discovery: identification and experimental validation of selective estrogen receptor modulators as ligands of 5-hydroxytryptamine-6 receptors and as potential cognition enhancers.
Year : 2012
Volume : 55
Issue : 12
First Page : 5704
Last Page : 5719
Authors : Hajjo R, Setola V, Roth BL, Tropsha A.
Abstract : We have devised a chemocentric informatics methodology for drug discovery integrating independent approaches to mining biomolecular databases. As a proof of concept, we have searched for novel putative cognition enhancers. First, we generated Quantitative Structure-Activity Relationship (QSAR) models of compounds binding to 5-hydroxytryptamine-6 receptor (5-HT(6)R), a known target for cognition enhancers, and employed these models for virtual screening to identify putative 5-HT(6)R actives. Second, we queried chemogenomics data from the Connectivity Map ( http://www.broad.mit.edu/cmap/ ) with the gene expression profile signatures of Alzheimer's disease patients to identify compounds putatively linked to the disease. Thirteen common hits were tested in 5-HT(6)R radioligand binding assays and ten were confirmed as actives. Four of them were known selective estrogen receptor modulators that were never reported as 5-HT(6)R ligands. Furthermore, nine of the confirmed actives were reported elsewhere to have memory-enhancing effects. The approaches discussed herein can be used broadly to identify novel drug-target-disease associations.
Displacement of [3H]mepyramine from human wild type N-terminal hemagglutinin-tagged histamine H1 receptor expressed in HEK293T cells after 4 hrs by microbeta liquid scintillation counting analysis
|
Homo sapiens
|
0.2512
nM
|
|
Journal : J Med Chem
Title : Identification of Ligand Binding Hot Spots of the Histamine H1 Receptor following Structure-Based Fragment Optimization.
Year : 2016
Volume : 59
Issue : 19
First Page : 9047
Last Page : 9061
Authors : Kuhne S, Kooistra AJ, Bosma R, Bortolato A, Wijtmans M, Vischer HF, Mason JS, de Graaf C, de Esch IJ, Leurs R.
Abstract : Developments in G protein-coupled receptor (GPCR) structural biology provide insights into GPCR-ligand binding. Compound 1 (4-(2-benzylphenoxy)piperidine) with high ligand efficiency for the histamine H1 receptor (H1R) was used to design derivatives to investigate the roles of (i) the amine-binding region, (ii) the upper and lower aromatic region, and (iii) binding site solvation. SAR analysis showed that the amine-binding region serves as the primary binding hot spot, preferably binding small tertiary amines. In silico prediction of water network energetics and mutagenesis studies indicated that the displacement of a water molecule from the amine-binding region is most likely responsible for the increased affinity of the N-methylated analog of 1. Deconstruction of 1 showed that the lower aromatic region serves as a secondary binding hot spot. This study demonstrates that an X-ray structure in combination with tool compounds, assessment of water energetics, and mutagenesis studies enables SAR exploration to map GPCR-ligand binding hot spots.