Inhibition of 4-(4-(dimethylamino)styryl)-N-methylpyridinium uptake at human OCT1 expressed in HEK293 cells at 100 uM by confocal microscopy
|
Homo sapiens
|
78.8
%
|
|
Journal : J. Med. Chem.
Title : Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
Year : 2008
Volume : 51
Issue : 19
First Page : 5932
Last Page : 5942
Authors : Ahlin G, Karlsson J, Pedersen JM, Gustavsson L, Larsson R, Matsson P, Norinder U, Bergström CA, Artursson P.
Abstract : The liver-specific organic cation transport protein (OCT1; SLC22A1) transports several cationic drugs including the antidiabetic drug metformin and the anticancer agents oxaliplatin and imatinib. In this study, we explored the chemical space of registered oral drugs with the aim of studying the inhibition pattern of OCT1 and of developing predictive computational models of OCT1 inhibition. In total, 191 structurally diverse compounds were examined in HEK293-OCT1 cells. The assay identified 47 novel inhibitors and confirmed 15 previously known inhibitors. The enrichment of OCT1 inhibitors was seen in several drug classes including antidepressants. High lipophilicity and a positive net charge were found to be the key physicochemical properties for OCT1 inhibition, whereas a high molecular dipole moment and many hydrogen bonds were negatively correlated to OCT1 inhibition. The data were used to generate OPLS-DA models for OCT1 inhibitors; the final model correctly predicted 82% of the inhibitors and 88% of the noninhibitors of the test set.
DRUGMATRIX: Muscarinic M3 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
39.0
nM
|
|
DRUGMATRIX: Muscarinic M3 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
8.253
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Muscarinic M4 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
20.0
nM
|
|
DRUGMATRIX: Muscarinic M4 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
2.773
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Muscarinic M5 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
8.373
nM
|
|
DRUGMATRIX: Muscarinic M5 radioligand binding (ligand: [3H] N-Methylscopolamine)
|
None
|
6.016
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Potassium Channel HERG radioligand binding (ligand: [3H] Astemizole)
|
None
|
395.1
nM
|
|
DRUGMATRIX: Potassium Channel HERG radioligand binding (ligand: [3H] Astemizole)
|
None
|
323.7
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT1B radioligand binding (ligand: [125I] Cyanopindolol)
|
Rattus norvegicus
|
359.0
nM
|
|
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT1B radioligand binding (ligand: [125I] Cyanopindolol)
|
Rattus norvegicus
|
220.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2A radioligand binding (ligand: [3H] Ketanserin)
|
None
|
32.0
nM
|
|
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2A radioligand binding (ligand: [3H] Ketanserin)
|
None
|
9.196
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Alpha-1A adrenergic receptor radioligand binding (ligand: prazosin)
|
Rattus norvegicus
|
53.0
nM
|
|
DRUGMATRIX: Alpha-1A adrenergic receptor radioligand binding (ligand: prazosin)
|
Rattus norvegicus
|
21.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Alpha-1B adrenergic receptor radioligand binding (ligand: prazosin)
|
Rattus norvegicus
|
74.0
nM
|
|
DRUGMATRIX: Alpha-1B adrenergic receptor radioligand binding (ligand: prazosin)
|
Rattus norvegicus
|
41.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Alpha-1D adrenergic receptor radioligand binding (ligand: prazosin)
|
None
|
32.0
nM
|
|
DRUGMATRIX: Alpha-1D adrenergic receptor radioligand binding (ligand: prazosin)
|
None
|
15.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Alpha-2A adrenergic receptor radioligand binding (ligand: MK-912)
|
None
|
183.0
nM
|
|
DRUGMATRIX: Alpha-2A adrenergic receptor radioligand binding (ligand: MK-912)
|
None
|
69.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Alpha-2B adrenergic receptor radioligand binding (ligand: Rauwolscine)
|
None
|
311.0
nM
|
|
DRUGMATRIX: Alpha-2B adrenergic receptor radioligand binding (ligand: Rauwolscine)
|
None
|
142.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Adrenergic Alpha-2C radioligand binding (ligand: [3H] MK-912)
|
None
|
95.0
nM
|
|
DRUGMATRIX: Adrenergic Alpha-2C radioligand binding (ligand: [3H] MK-912)
|
None
|
14.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2B radioligand binding (ligand: [3H] Lysergic acid diethylamide)
|
None
|
36.0
nM
|
|
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2B radioligand binding (ligand: [3H] Lysergic acid diethylamide)
|
None
|
23.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2C radioligand binding (ligand: [3H] Mesulergine)
|
None
|
99.0
nM
|
|
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT2C radioligand binding (ligand: [3H] Mesulergine)
|
None
|
52.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT6 radioligand binding (ligand: [3H] Lysergic acid diethylamide)
|
None
|
77.0
nM
|
|
DRUGMATRIX: Serotonin (5-Hydroxytryptamine) 5-HT6 radioligand binding (ligand: [3H] Lysergic acid diethylamide)
|
None
|
36.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Sigma1 radioligand binding (ligand: [3H] Haloperidol)
|
None
|
34.0
nM
|
|
DRUGMATRIX: Sigma1 radioligand binding (ligand: [3H] Haloperidol)
|
None
|
14.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Sigma2 radioligand binding (ligand: [3H] Ifenprodil)
|
Rattus norvegicus
|
728.0
nM
|
|
DRUGMATRIX: Sigma2 radioligand binding (ligand: [3H] Ifenprodil)
|
Rattus norvegicus
|
448.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Sodium Channel, Site 2 radioligand binding (ligand: [3H] Batrachotoxin)
|
Rattus norvegicus
|
849.0
nM
|
|
DRUGMATRIX: Sodium Channel, Site 2 radioligand binding (ligand: [3H] Batrachotoxin)
|
Rattus norvegicus
|
774.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Calcium Channel Type L, Phenylalkylamine radioligand binding (ligand: [3H] (-)-Desmethoxyverapamil (D-888))
|
Rattus norvegicus
|
508.0
nM
|
|
DRUGMATRIX: Calcium Channel Type L, Phenylalkylamine radioligand binding (ligand: [3H] (-)-Desmethoxyverapamil (D-888))
|
Rattus norvegicus
|
493.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: CYP450, 2C19 enzyme inhibition (substrate: 3-Cyano-7-ethoxycoumarin)
|
None
|
600.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Dopamine D1 radioligand binding (ligand: [3H] SCH-23390)
|
None
|
767.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Dopamine D2L radioligand binding (ligand: [3H] Spiperone)
|
None
|
136.0
nM
|
|
DRUGMATRIX: Dopamine D2L radioligand binding (ligand: [3H] Spiperone)
|
None
|
45.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Dopamine D3 radioligand binding (ligand: [3H] Spiperone)
|
None
|
7.335
nM
|
|
DRUGMATRIX: Dopamine D3 radioligand binding (ligand: [3H] Spiperone)
|
None
|
2.491
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Dopamine Transporter radioligand binding (ligand: [125I] RTI-55)
|
None
|
678.0
nM
|
|
DRUGMATRIX: Dopamine Transporter radioligand binding (ligand: [125I] RTI-55)
|
None
|
538.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Histamine H1, Central radioligand binding (ligand: [3H] Pyrilamine)
|
None
|
0.421
nM
|
|
DRUGMATRIX: Histamine H1, Central radioligand binding (ligand: [3H] Pyrilamine)
|
None
|
0.049
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Histamine H2 radioligand binding (ligand: [125I] Aminopotentidine)
|
None
|
370.0
nM
|
|
DRUGMATRIX: Histamine H2 radioligand binding (ligand: [125I] Aminopotentidine)
|
None
|
364.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
Activity of compound against Alpha 2C (ADRA2C) adrenergic receptor by displacement of [3H]-rauwolscine
|
Homo sapiens
|
223.87
nM
|
|
Journal : Nature
Title : A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
Year : 2020
Authors : David E Gordon, Gwendolyn M Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Kris M White, Matthew J O'Meara, Veronica V Rezelj, Jeffrey Z Guo, Danielle L Swaney, et al
Abstract : The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
Activity of compound against Muscarinic acetylcholine receptor M1 (CHRM1) by displacement of 3H-QNB
|
Homo sapiens
|
19.95
nM
|
|
Journal : Nature
Title : A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
Year : 2020
Authors : David E Gordon, Gwendolyn M Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Kris M White, Matthew J O'Meara, Veronica V Rezelj, Jeffrey Z Guo, Danielle L Swaney, et al
Abstract : The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
Displacement of [3H]-DTG from the Sigma2 receptor
|
Homo sapiens
|
25.12
nM
|
|
Journal : Nature
Title : A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
Year : 2020
Authors : David E Gordon, Gwendolyn M Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Kris M White, Matthew J O'Meara, Veronica V Rezelj, Jeffrey Z Guo, Danielle L Swaney, et al
Abstract : The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
Displacement of [3H]-pentazocin from the Sigma1 receptor
|
Homo sapiens
|
10.0
nM
|
|
Journal : Nature
Title : A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
Year : 2020
Authors : David E Gordon, Gwendolyn M Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Kris M White, Matthew J O'Meara, Veronica V Rezelj, Jeffrey Z Guo, Danielle L Swaney, et al
Abstract : The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
Activity of compound against Alpha-2A (ADRA2A) adrenergic receptor by displacement of [3H]-rauwolscine
|
Homo sapiens
|
169.82
nM
|
|
Journal : Nature
Title : A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
Year : 2020
Authors : David E Gordon, Gwendolyn M Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Kris M White, Matthew J O'Meara, Veronica V Rezelj, Jeffrey Z Guo, Danielle L Swaney, et al
Abstract : The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
Activity of compound against Alpha 2B (ADRA2B) adrenergic receptor by displacement of [3H]-rauwolscine
|
Homo sapiens
|
478.63
nM
|
|
Journal : Nature
Title : A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
Year : 2020
Authors : David E Gordon, Gwendolyn M Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Kris M White, Matthew J O'Meara, Veronica V Rezelj, Jeffrey Z Guo, Danielle L Swaney, et al
Abstract : The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
Activity of compound against Muscarinic acetylcholine receptor M2 (CHRM2) by displacement of 3H-QNB
|
Homo sapiens
|
117.49
nM
|
|
Journal : Nature
Title : A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
Year : 2020
Authors : David E Gordon, Gwendolyn M Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Kris M White, Matthew J O'Meara, Veronica V Rezelj, Jeffrey Z Guo, Danielle L Swaney, et al
Abstract : The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
Activity of compound against Muscarinic acetylcholine receptor M3 (CHRM3) by displacement of 3H-QNB
|
Homo sapiens
|
56.23
nM
|
|
Journal : Nature
Title : A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
Year : 2020
Authors : David E Gordon, Gwendolyn M Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Kris M White, Matthew J O'Meara, Veronica V Rezelj, Jeffrey Z Guo, Danielle L Swaney, et al
Abstract : The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
Activity of compound against Muscarinic acetylcholine receptor M4 (CHRM4) by displacement of 3H-QNB
|
Homo sapiens
|
53.7
nM
|
|
Journal : Nature
Title : A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
Year : 2020
Authors : David E Gordon, Gwendolyn M Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Kris M White, Matthew J O'Meara, Veronica V Rezelj, Jeffrey Z Guo, Danielle L Swaney, et al
Abstract : The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
Activity of compound against Muscarinic acetylcholine receptor M5 (CHRM5) by displacement of 3H-QNB
|
Homo sapiens
|
27.54
nM
|
|
Journal : Nature
Title : A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
Year : 2020
Authors : David E Gordon, Gwendolyn M Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Kris M White, Matthew J O'Meara, Veronica V Rezelj, Jeffrey Z Guo, Danielle L Swaney, et al
Abstract : The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
hERG binding assays: Displacement of [3H]-Dofetilide (5 nM final) from hERG membranes obtained from HEK293 cells
|
Homo sapiens
|
158.49
nM
|
|
Journal : Nature
Title : A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
Year : 2020
Authors : David E Gordon, Gwendolyn M Jang, Mehdi Bouhaddou, Jiewei Xu, Kirsten Obernier, Kris M White, Matthew J O'Meara, Veronica V Rezelj, Jeffrey Z Guo, Danielle L Swaney, et al
Abstract : The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
10.9
%
|
|
Title : Identification of inhibitors of SARS-Cov2 M-Pro enzymatic activity using a small molecule repurposing screen
Year : 2020
Authors : Maria Kuzikov, Elisa Costanzi, Jeanette Reinshagen, Francesca Esposito, Laura Vangeel, Markus Wolf, Bernhard Ellinger, Carsten Claussen, Gerd Geisslinger, Angela Corona, Daniela Iaconis, Carmine Talarico, Candida Manelfi, Rolando Cannalire, Giulia Rossetti, Jonas Gossen, Simone Albani, Francesco Musiani, Katja Herzog, Yang Ye, Barbara Giabbai, Nicola Demitri, Dirk Jochmans, Steven De Jonghe, Jasper Rymenants, Vincenzo Summa, Enzo Tramontano, Andrea R. Beccari, Pieter Leyssen, Paola Storici, Johan Neyts, Philip Gribbon, and Andrea Zaliani
Abstract : Compound repurposing is an important strategy being pursued in the identification of effective treatment against the SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (M-Pro), also termed 3CL-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyprotein into 11 non-structural proteins. We report the results of a screening campaign involving ca 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and chemicals regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, but we have also identified 68 compounds with IC50 lower than 1 uM and 127 compounds with IC50 lower than 5 uM. Profiling showed 67% of confirmed hits were selective (> 5 fold) against other Cys- and Ser- proteases (Chymotrypsin and Cathepsin-L) and MERS 3CL-Pro. Selected compounds were also analysed in their binding characteristics.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
0.1
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
0.1
%
|
|
Title : Cytopathic SARS-Cov2 screening on VERO-E6 cells in a large repurposing effort
Year : 2020
Authors : Andrea Zaliani, Laura Vangeel, Jeanette Reinshagen, Daniela Iaconis, Maria Kuzikov, Oliver Keminer, Markus Wolf, Bernhard Ellinger, Francesca Esposito, Angela Corona, Enzo Tramontano, Candida Manelfi, Katja Herzog, Dirk Jochmans, Steven De Jonghe, Winston Chiu, Thibault Francken, Joost Schepers, Caroline Collard, Kayvan Abbasi, Carsten Claussen , Vincenzo Summa, Andrea R. Beccari, Johan Neyts, Philip Gribbon and Pieter Leyssen
Abstract : Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.