Synonyms
Status
Molecule Category UNKNOWN
UNII NOE38VQA1W
EPA CompTox DTXSID40192650

Structure

InChI Key XDJCLCLBSGGNKS-UHFFFAOYSA-N
Smiles c1cc(OCCN2CCCCC2)cc(-c2n[nH]c3ccc(-c4nnc[nH]4)cc23)c1
InChI
InChI=1S/C22H24N6O/c1-2-9-28(10-3-1)11-12-29-18-6-4-5-16(13-18)21-19-14-17(22-23-15-24-27-22)7-8-20(19)25-26-21/h4-8,13-15H,1-3,9-12H2,(H,25,26)(H,23,24,27)

Physicochemical Descriptors

Property Name Value
Molecular Formula C22H24N6O
Molecular Weight 388.48
AlogP 3.88
Hydrogen Bond Acceptor 5.0
Hydrogen Bond Donor 2.0
Number of Rotational Bond 6.0
Polar Surface Area 82.72
Molecular species BASE
Aromatic Rings 4.0
Heavy Atoms 29.0

Bioactivity

Mechanism of Action Action Reference
c-Jun N-terminal kinase 1 inhibitor INHIBITOR PubMed Other
Protein: c-Jun N-terminal kinase 1

Description: Mitogen-activated protein kinase 8

Organism : Homo sapiens

P45983 ENSG00000107643
Protein: c-Jun N-terminal kinase 2

Description: Mitogen-activated protein kinase 9

Organism : Homo sapiens

P45984 ENSG00000050748
Assay Description Organism Bioactivity Reference
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 287.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 285.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 282.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 105.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 97.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 747.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 584.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 161.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 636.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 340.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 217.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 483.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 56.0 nM
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry. Homo sapiens 90.0 nM
Inhibition of His6-tagged MELK catalytic domain (1 to 340 residues) (unknown origin) expressed in Escherichia coli BL21 (DE3) cells using Bcl-GL as substrate measured after 30 mins in presence of [gamma32P]ATP by liquid scintillation counting method Homo sapiens 340.0 nM
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of Caco-2 cells at 10 uM after 48 hours by high content imaging Homo sapiens 0.05 %
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate Severe acute respiratory syndrome coronavirus 2 7.71 %
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging Chlorocebus sabaeus 0.35 % Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging Chlorocebus sabaeus 0.35 %

Cross References

Resources Reference
ChEBI 91437
ChEMBL CHEMBL1614713
DrugBank DB12432
FDA SRS NOE38VQA1W
PubChem 10430360
SureChEMBL SCHEMBL4604749
ZINC ZINC000038836256