Journal : J Med Chem
Title : Discovery of a Hepatitis C Virus NS5B Replicase Palm Site Allosteric Inhibitor (BMS-929075) Advanced to Phase 1 Clinical Studies.
Year : 2017
Volume : 60
Issue : 10
First Page : 4369
Last Page : 4385
Authors : Yeung KS, Beno BR, Parcella K, Bender JA, Grant-Young KA, Nickel A, Gunaga P, Anjanappa P, Bora RO, Selvakumar K, Rigat K, Wang YK, Liu M, Lemm J, Mosure K, Sheriff S, Wan C, Witmer M, Kish K, Hanumegowda U, Zhuo X, Shu YZ, Parker D, Haskell R, Ng A, Gao Q, Colston E, Raybon J, Grasela DM, Santone K, Gao M, Meanwell NA, Sinz M, Soars MG, Knipe JO, Roberts SB, Kadow JF.
Abstract : The hepatitis C virus (HCV) NS5B replicase is a prime target for the development of direct-acting antiviral drugs for the treatment of chronic HCV infection. Inspired by the overlay of bound structures of three structurally distinct NS5B palm site allosteric inhibitors, the high-throughput screening hit anthranilic acid 4, the known benzofuran analogue 5, and the benzothiadiazine derivative 6, an optimization process utilizing the simple benzofuran template 7 as a starting point for a fragment growing approach was pursued. A delicate balance of molecular properties achieved via disciplined lipophilicity changes was essential to achieve both high affinity binding and a stringent targeted absorption, distribution, metabolism, and excretion profile. These efforts led to the discovery of BMS-929075 (37), which maintained ligand efficiency relative to early leads, demonstrated efficacy in a triple combination regimen in HCV replicon cells, and exhibited consistently high oral bioavailability and pharmacokinetic parameters across preclinical animal species. The human PK properties from the Phase I clinical studies of 37 were better than anticipated and suggest promising potential for QD administration.