Antimalarial activity against Plasmodium berghei ANKA expressing GFP infected in Balb/c mouse assessed as inhibition of parasitemia at 50 mg/kg administered as single dose on day 1 of infection measured on day 3 post exposure relative to control
|
Plasmodium berghei ANKA
|
95.5
%
|
|
Journal : J. Med. Chem.
Title : Orally bioavailable 6-chloro-7-methoxy-4(1H)-quinolones efficacious against multiple stages of Plasmodium.
Year : 2014
Volume : 57
Issue : 21
First Page : 8860
Last Page : 8879
Authors : Cross RM, Flanigan DL, Monastyrskyi A, LaCrue AN, Sáenz FE, Maignan JR, Mutka TS, White KL, Shackleford DM, Bathurst I, Fronczek FR, Wojtas L, Guida WC, Charman SA, Burrows JN, Kyle DE, Manetsch R.
Abstract : The continued proliferation of malaria throughout temperate and tropical regions of the world has promoted a push for more efficacious treatments to combat the disease. Unfortunately, more recent remedies such as artemisinin combination therapies have been rendered less effective due to developing parasite resistance, and new drugs are required that target the parasite in the liver to support the disease elimination efforts. Research was initiated to revisit antimalarials developed in the 1940s and 1960s that were deemed unsuitable for use as therapeutic agents as a result of poor understanding of both physicochemical properties and parasitology. Structure-activity and structure-property relationship studies were conducted to generate a set of compounds with the general 6-chloro-7-methoxy-2-methyl-4(1H)-quinolone scaffold which were substituted at the 3-position with a variety of phenyl moieties possessing various properties. Extensive physicochemical evaluation of the quinolone series was carried out to downselect the most promising 4(1H)-quinolones, 7, 62, 66, and 67, which possessed low-nanomolar EC50 values against W2 and TM90-C2B as well as improved microsomal stability. Additionally, in vivo Thompson test results using Plasmodium berghei in mice showed that these 4(1H)-quinolones were efficacious for the reduction of parasitemia at >99% after 6 days.
Antimalarial activity against Plasmodium berghei ANKA expressing GFP infected in Balb/c mouse assessed as inhibition of parasitemia at 50 mg/kg administered as single dose on day 1 of infection measured on day 6 post exposure relative to control
|
Plasmodium berghei ANKA
|
99.9
%
|
|
Journal : J. Med. Chem.
Title : Orally bioavailable 6-chloro-7-methoxy-4(1H)-quinolones efficacious against multiple stages of Plasmodium.
Year : 2014
Volume : 57
Issue : 21
First Page : 8860
Last Page : 8879
Authors : Cross RM, Flanigan DL, Monastyrskyi A, LaCrue AN, Sáenz FE, Maignan JR, Mutka TS, White KL, Shackleford DM, Bathurst I, Fronczek FR, Wojtas L, Guida WC, Charman SA, Burrows JN, Kyle DE, Manetsch R.
Abstract : The continued proliferation of malaria throughout temperate and tropical regions of the world has promoted a push for more efficacious treatments to combat the disease. Unfortunately, more recent remedies such as artemisinin combination therapies have been rendered less effective due to developing parasite resistance, and new drugs are required that target the parasite in the liver to support the disease elimination efforts. Research was initiated to revisit antimalarials developed in the 1940s and 1960s that were deemed unsuitable for use as therapeutic agents as a result of poor understanding of both physicochemical properties and parasitology. Structure-activity and structure-property relationship studies were conducted to generate a set of compounds with the general 6-chloro-7-methoxy-2-methyl-4(1H)-quinolone scaffold which were substituted at the 3-position with a variety of phenyl moieties possessing various properties. Extensive physicochemical evaluation of the quinolone series was carried out to downselect the most promising 4(1H)-quinolones, 7, 62, 66, and 67, which possessed low-nanomolar EC50 values against W2 and TM90-C2B as well as improved microsomal stability. Additionally, in vivo Thompson test results using Plasmodium berghei in mice showed that these 4(1H)-quinolones were efficacious for the reduction of parasitemia at >99% after 6 days.
Antimalarial activity against Plasmodium berghei ANKA expressing GFP infected in Balb/c mouse assessed as inhibition of parasitemia at 30 mg/kg, po qd administered as single dose on day 3 to 5 of exposure measured on day 6 post exposure by in vivo thomson test relative to control
|
Plasmodium berghei ANKA
|
99.8
%
|
|
Journal : J. Med. Chem.
Title : Orally bioavailable 6-chloro-7-methoxy-4(1H)-quinolones efficacious against multiple stages of Plasmodium.
Year : 2014
Volume : 57
Issue : 21
First Page : 8860
Last Page : 8879
Authors : Cross RM, Flanigan DL, Monastyrskyi A, LaCrue AN, Sáenz FE, Maignan JR, Mutka TS, White KL, Shackleford DM, Bathurst I, Fronczek FR, Wojtas L, Guida WC, Charman SA, Burrows JN, Kyle DE, Manetsch R.
Abstract : The continued proliferation of malaria throughout temperate and tropical regions of the world has promoted a push for more efficacious treatments to combat the disease. Unfortunately, more recent remedies such as artemisinin combination therapies have been rendered less effective due to developing parasite resistance, and new drugs are required that target the parasite in the liver to support the disease elimination efforts. Research was initiated to revisit antimalarials developed in the 1940s and 1960s that were deemed unsuitable for use as therapeutic agents as a result of poor understanding of both physicochemical properties and parasitology. Structure-activity and structure-property relationship studies were conducted to generate a set of compounds with the general 6-chloro-7-methoxy-2-methyl-4(1H)-quinolone scaffold which were substituted at the 3-position with a variety of phenyl moieties possessing various properties. Extensive physicochemical evaluation of the quinolone series was carried out to downselect the most promising 4(1H)-quinolones, 7, 62, 66, and 67, which possessed low-nanomolar EC50 values against W2 and TM90-C2B as well as improved microsomal stability. Additionally, in vivo Thompson test results using Plasmodium berghei in mice showed that these 4(1H)-quinolones were efficacious for the reduction of parasitemia at >99% after 6 days.
Inhibition of human recombinant CYP2J2 assessed as reduction in astemizole O-demethylation by LC-MS/MS method
|
Homo sapiens
|
990.0
nM
|
|
Journal : Drug Metab. Dispos.
Title : Discovery and characterization of novel, potent, and selective cytochrome P450 2J2 inhibitors.
Year : 2013
Volume : 41
Issue : 1
First Page : 60
Last Page : 71
Authors : Ren S, Zeng J, Mei Y, Zhang JZ, Yan SF, Fei J, Chen L.
Abstract : Cytochrome P450 (CYP) 2J2 is one of the human CYPs involved in phase I xenobiotics metabolism. It is mainly expressed in extrahepatic tissues, including intestine and cardiovascular systems. The general role of CYP2J2 in drug metabolism is not yet fully understood, and the recent discovery that CYP2J2 can metabolize a wide range of structurally diverse drugs and its primary distribution in the intestine suggest its potentially indispensable role in first-pass intestinal metabolism and involvement in drug-drug interaction. To fully characterize its role in drug metabolism, selective and potent inhibitors of CYP2J2 are necessary tools. In the current study, 69 known drugs were screened for the inhibition of CYP2J2, and we discovered a number of marketed drugs as potent and selective CYP2J2 inhibitors. In particular, telmisartan and flunarizine have CYP2J2 inhibition IC(50) values of 0.42 μM and 0.94 μM, respectively, which are at least 10-fold more selective against all other major metabolizing CYPs; moreover, they are not substrates of CYP2J2 and show no time-dependent inhibition toward this CYP. The results of enzyme kinetics studies, supported by molecular modeling, have also elucidated that telmisartan is a mixed-type inhibitor, and flunarizine competitively inhibits CYP2J2. The K(i) for telmisartan is 0.19 μM, with an α value, an indicator of the type of inhibition mechanism, of 2.80, and flunarizine has a K(i) value of 0.13 μM. These newly discovered CYP2J2 inhibitors can be potentially used as a tool to study CYP2J2 in drug metabolism and interaction in a clinical setting.
Inhibition of CYP2D6 in human liver microsomes using bufuralol substrate by LC-MS/MS method
|
Homo sapiens
|
640.0
nM
|
|
Journal : Drug Metab. Dispos.
Title : Discovery and characterization of novel, potent, and selective cytochrome P450 2J2 inhibitors.
Year : 2013
Volume : 41
Issue : 1
First Page : 60
Last Page : 71
Authors : Ren S, Zeng J, Mei Y, Zhang JZ, Yan SF, Fei J, Chen L.
Abstract : Cytochrome P450 (CYP) 2J2 is one of the human CYPs involved in phase I xenobiotics metabolism. It is mainly expressed in extrahepatic tissues, including intestine and cardiovascular systems. The general role of CYP2J2 in drug metabolism is not yet fully understood, and the recent discovery that CYP2J2 can metabolize a wide range of structurally diverse drugs and its primary distribution in the intestine suggest its potentially indispensable role in first-pass intestinal metabolism and involvement in drug-drug interaction. To fully characterize its role in drug metabolism, selective and potent inhibitors of CYP2J2 are necessary tools. In the current study, 69 known drugs were screened for the inhibition of CYP2J2, and we discovered a number of marketed drugs as potent and selective CYP2J2 inhibitors. In particular, telmisartan and flunarizine have CYP2J2 inhibition IC(50) values of 0.42 μM and 0.94 μM, respectively, which are at least 10-fold more selective against all other major metabolizing CYPs; moreover, they are not substrates of CYP2J2 and show no time-dependent inhibition toward this CYP. The results of enzyme kinetics studies, supported by molecular modeling, have also elucidated that telmisartan is a mixed-type inhibitor, and flunarizine competitively inhibits CYP2J2. The K(i) for telmisartan is 0.19 μM, with an α value, an indicator of the type of inhibition mechanism, of 2.80, and flunarizine has a K(i) value of 0.13 μM. These newly discovered CYP2J2 inhibitors can be potentially used as a tool to study CYP2J2 in drug metabolism and interaction in a clinical setting.
Time dependent inhibition of CYP1A2 (unknown origin) at 100 uM by LC/MS system
|
Homo sapiens
|
10.0
%
|
|
Journal : Drug Metab. Dispos.
Title : Combination of GSH trapping and time-dependent inhibition assays as a predictive method of drugs generating highly reactive metabolites.
Year : 2011
Volume : 39
Issue : 7
First Page : 1247
Last Page : 1254
Authors : Nakayama S, Takakusa H, Watanabe A, Miyaji Y, Suzuki W, Sugiyama D, Shiosakai K, Honda K, Okudaira N, Izumi T, Okazaki O.
Abstract : Covalent binding (CB) of reactive metabolites (RMs) is potentially involved in severe adverse drug reactions. Because the CB assay is of low throughput and costly, a qualitative trapping assay using agents such as [(35)S]GSH is often performed in the early stages of drug discovery. However, trapping methods alone cannot replace the CB assay. We hypothesized that the time-dependent inhibition (TDI) assay might be complementary to the [(35)S]GSH trapping assay in detecting RMs. We performed CB assays, [(35)S]GSH trapping assays, and TDI assays for 42 structurally diverse compounds. First, we showed that the [(35)S]GSH trapping assay alone does not correlate with the extent of CB. Four compounds that the [(35)S]GSH trapping assay failed to detect but that showed high extent of CB were inactivators of the enzyme in the TDI assay. There was a tendency for compounds judged as positive in the TDI assay to show a high degree of CB irrespective of the result of the [(35)S]GSH trapping assay. Finally, to combine parameters from the two assays, we introduced intrinsic clearance to describe the formation of RMs (CL(int, RMs)). The Spearman rank correlation coefficient between the extent of CB and CL(int, RMs) was 0.77 (p < 0.0001), which was better than that for the formation rates of [(35)S]GSH adducts. Therefore, we demonstrated that a combination of the [(35)S]GSH trapping and TDI assays is an effective method for detecting compounds potentially capable of generating highly reactive metabolites in the early stages of drug discovery.
Time dependent inhibition of CYP2B6 (unknown origin) at 100 uM by LC/MS system
|
Homo sapiens
|
10.0
%
|
|
Journal : Drug Metab. Dispos.
Title : Combination of GSH trapping and time-dependent inhibition assays as a predictive method of drugs generating highly reactive metabolites.
Year : 2011
Volume : 39
Issue : 7
First Page : 1247
Last Page : 1254
Authors : Nakayama S, Takakusa H, Watanabe A, Miyaji Y, Suzuki W, Sugiyama D, Shiosakai K, Honda K, Okudaira N, Izumi T, Okazaki O.
Abstract : Covalent binding (CB) of reactive metabolites (RMs) is potentially involved in severe adverse drug reactions. Because the CB assay is of low throughput and costly, a qualitative trapping assay using agents such as [(35)S]GSH is often performed in the early stages of drug discovery. However, trapping methods alone cannot replace the CB assay. We hypothesized that the time-dependent inhibition (TDI) assay might be complementary to the [(35)S]GSH trapping assay in detecting RMs. We performed CB assays, [(35)S]GSH trapping assays, and TDI assays for 42 structurally diverse compounds. First, we showed that the [(35)S]GSH trapping assay alone does not correlate with the extent of CB. Four compounds that the [(35)S]GSH trapping assay failed to detect but that showed high extent of CB were inactivators of the enzyme in the TDI assay. There was a tendency for compounds judged as positive in the TDI assay to show a high degree of CB irrespective of the result of the [(35)S]GSH trapping assay. Finally, to combine parameters from the two assays, we introduced intrinsic clearance to describe the formation of RMs (CL(int, RMs)). The Spearman rank correlation coefficient between the extent of CB and CL(int, RMs) was 0.77 (p < 0.0001), which was better than that for the formation rates of [(35)S]GSH adducts. Therefore, we demonstrated that a combination of the [(35)S]GSH trapping and TDI assays is an effective method for detecting compounds potentially capable of generating highly reactive metabolites in the early stages of drug discovery.
Time dependent inhibition of CYP2C9 (unknown origin) at 100 uM by LC/MS system
|
Homo sapiens
|
10.0
%
|
|
Journal : Drug Metab. Dispos.
Title : Combination of GSH trapping and time-dependent inhibition assays as a predictive method of drugs generating highly reactive metabolites.
Year : 2011
Volume : 39
Issue : 7
First Page : 1247
Last Page : 1254
Authors : Nakayama S, Takakusa H, Watanabe A, Miyaji Y, Suzuki W, Sugiyama D, Shiosakai K, Honda K, Okudaira N, Izumi T, Okazaki O.
Abstract : Covalent binding (CB) of reactive metabolites (RMs) is potentially involved in severe adverse drug reactions. Because the CB assay is of low throughput and costly, a qualitative trapping assay using agents such as [(35)S]GSH is often performed in the early stages of drug discovery. However, trapping methods alone cannot replace the CB assay. We hypothesized that the time-dependent inhibition (TDI) assay might be complementary to the [(35)S]GSH trapping assay in detecting RMs. We performed CB assays, [(35)S]GSH trapping assays, and TDI assays for 42 structurally diverse compounds. First, we showed that the [(35)S]GSH trapping assay alone does not correlate with the extent of CB. Four compounds that the [(35)S]GSH trapping assay failed to detect but that showed high extent of CB were inactivators of the enzyme in the TDI assay. There was a tendency for compounds judged as positive in the TDI assay to show a high degree of CB irrespective of the result of the [(35)S]GSH trapping assay. Finally, to combine parameters from the two assays, we introduced intrinsic clearance to describe the formation of RMs (CL(int, RMs)). The Spearman rank correlation coefficient between the extent of CB and CL(int, RMs) was 0.77 (p < 0.0001), which was better than that for the formation rates of [(35)S]GSH adducts. Therefore, we demonstrated that a combination of the [(35)S]GSH trapping and TDI assays is an effective method for detecting compounds potentially capable of generating highly reactive metabolites in the early stages of drug discovery.
Time dependent inhibition of CYP2C19 in human liver microsomes at 100 uM by LC/MS system
|
Homo sapiens
|
10.0
%
|
|
Journal : Drug Metab. Dispos.
Title : Combination of GSH trapping and time-dependent inhibition assays as a predictive method of drugs generating highly reactive metabolites.
Year : 2011
Volume : 39
Issue : 7
First Page : 1247
Last Page : 1254
Authors : Nakayama S, Takakusa H, Watanabe A, Miyaji Y, Suzuki W, Sugiyama D, Shiosakai K, Honda K, Okudaira N, Izumi T, Okazaki O.
Abstract : Covalent binding (CB) of reactive metabolites (RMs) is potentially involved in severe adverse drug reactions. Because the CB assay is of low throughput and costly, a qualitative trapping assay using agents such as [(35)S]GSH is often performed in the early stages of drug discovery. However, trapping methods alone cannot replace the CB assay. We hypothesized that the time-dependent inhibition (TDI) assay might be complementary to the [(35)S]GSH trapping assay in detecting RMs. We performed CB assays, [(35)S]GSH trapping assays, and TDI assays for 42 structurally diverse compounds. First, we showed that the [(35)S]GSH trapping assay alone does not correlate with the extent of CB. Four compounds that the [(35)S]GSH trapping assay failed to detect but that showed high extent of CB were inactivators of the enzyme in the TDI assay. There was a tendency for compounds judged as positive in the TDI assay to show a high degree of CB irrespective of the result of the [(35)S]GSH trapping assay. Finally, to combine parameters from the two assays, we introduced intrinsic clearance to describe the formation of RMs (CL(int, RMs)). The Spearman rank correlation coefficient between the extent of CB and CL(int, RMs) was 0.77 (p < 0.0001), which was better than that for the formation rates of [(35)S]GSH adducts. Therefore, we demonstrated that a combination of the [(35)S]GSH trapping and TDI assays is an effective method for detecting compounds potentially capable of generating highly reactive metabolites in the early stages of drug discovery.
Time dependent inhibition of CYP3A4 (unknown origin) at 100 uM by LC/MS system
|
Homo sapiens
|
10.0
%
|
|
Journal : Drug Metab. Dispos.
Title : Combination of GSH trapping and time-dependent inhibition assays as a predictive method of drugs generating highly reactive metabolites.
Year : 2011
Volume : 39
Issue : 7
First Page : 1247
Last Page : 1254
Authors : Nakayama S, Takakusa H, Watanabe A, Miyaji Y, Suzuki W, Sugiyama D, Shiosakai K, Honda K, Okudaira N, Izumi T, Okazaki O.
Abstract : Covalent binding (CB) of reactive metabolites (RMs) is potentially involved in severe adverse drug reactions. Because the CB assay is of low throughput and costly, a qualitative trapping assay using agents such as [(35)S]GSH is often performed in the early stages of drug discovery. However, trapping methods alone cannot replace the CB assay. We hypothesized that the time-dependent inhibition (TDI) assay might be complementary to the [(35)S]GSH trapping assay in detecting RMs. We performed CB assays, [(35)S]GSH trapping assays, and TDI assays for 42 structurally diverse compounds. First, we showed that the [(35)S]GSH trapping assay alone does not correlate with the extent of CB. Four compounds that the [(35)S]GSH trapping assay failed to detect but that showed high extent of CB were inactivators of the enzyme in the TDI assay. There was a tendency for compounds judged as positive in the TDI assay to show a high degree of CB irrespective of the result of the [(35)S]GSH trapping assay. Finally, to combine parameters from the two assays, we introduced intrinsic clearance to describe the formation of RMs (CL(int, RMs)). The Spearman rank correlation coefficient between the extent of CB and CL(int, RMs) was 0.77 (p < 0.0001), which was better than that for the formation rates of [(35)S]GSH adducts. Therefore, we demonstrated that a combination of the [(35)S]GSH trapping and TDI assays is an effective method for detecting compounds potentially capable of generating highly reactive metabolites in the early stages of drug discovery.
Time dependent inhibition of CYP2C8 (unknown origin) at 30 uM by LC/MS system
|
Homo sapiens
|
10.0
%
|
|
Journal : Drug Metab. Dispos.
Title : Combination of GSH trapping and time-dependent inhibition assays as a predictive method of drugs generating highly reactive metabolites.
Year : 2011
Volume : 39
Issue : 7
First Page : 1247
Last Page : 1254
Authors : Nakayama S, Takakusa H, Watanabe A, Miyaji Y, Suzuki W, Sugiyama D, Shiosakai K, Honda K, Okudaira N, Izumi T, Okazaki O.
Abstract : Covalent binding (CB) of reactive metabolites (RMs) is potentially involved in severe adverse drug reactions. Because the CB assay is of low throughput and costly, a qualitative trapping assay using agents such as [(35)S]GSH is often performed in the early stages of drug discovery. However, trapping methods alone cannot replace the CB assay. We hypothesized that the time-dependent inhibition (TDI) assay might be complementary to the [(35)S]GSH trapping assay in detecting RMs. We performed CB assays, [(35)S]GSH trapping assays, and TDI assays for 42 structurally diverse compounds. First, we showed that the [(35)S]GSH trapping assay alone does not correlate with the extent of CB. Four compounds that the [(35)S]GSH trapping assay failed to detect but that showed high extent of CB were inactivators of the enzyme in the TDI assay. There was a tendency for compounds judged as positive in the TDI assay to show a high degree of CB irrespective of the result of the [(35)S]GSH trapping assay. Finally, to combine parameters from the two assays, we introduced intrinsic clearance to describe the formation of RMs (CL(int, RMs)). The Spearman rank correlation coefficient between the extent of CB and CL(int, RMs) was 0.77 (p < 0.0001), which was better than that for the formation rates of [(35)S]GSH adducts. Therefore, we demonstrated that a combination of the [(35)S]GSH trapping and TDI assays is an effective method for detecting compounds potentially capable of generating highly reactive metabolites in the early stages of drug discovery.
Time dependent inhibition of CYP2D6 (unknown origin) at 10 uM by LC/MS system
|
Homo sapiens
|
10.0
%
|
|
Journal : Drug Metab. Dispos.
Title : Combination of GSH trapping and time-dependent inhibition assays as a predictive method of drugs generating highly reactive metabolites.
Year : 2011
Volume : 39
Issue : 7
First Page : 1247
Last Page : 1254
Authors : Nakayama S, Takakusa H, Watanabe A, Miyaji Y, Suzuki W, Sugiyama D, Shiosakai K, Honda K, Okudaira N, Izumi T, Okazaki O.
Abstract : Covalent binding (CB) of reactive metabolites (RMs) is potentially involved in severe adverse drug reactions. Because the CB assay is of low throughput and costly, a qualitative trapping assay using agents such as [(35)S]GSH is often performed in the early stages of drug discovery. However, trapping methods alone cannot replace the CB assay. We hypothesized that the time-dependent inhibition (TDI) assay might be complementary to the [(35)S]GSH trapping assay in detecting RMs. We performed CB assays, [(35)S]GSH trapping assays, and TDI assays for 42 structurally diverse compounds. First, we showed that the [(35)S]GSH trapping assay alone does not correlate with the extent of CB. Four compounds that the [(35)S]GSH trapping assay failed to detect but that showed high extent of CB were inactivators of the enzyme in the TDI assay. There was a tendency for compounds judged as positive in the TDI assay to show a high degree of CB irrespective of the result of the [(35)S]GSH trapping assay. Finally, to combine parameters from the two assays, we introduced intrinsic clearance to describe the formation of RMs (CL(int, RMs)). The Spearman rank correlation coefficient between the extent of CB and CL(int, RMs) was 0.77 (p < 0.0001), which was better than that for the formation rates of [(35)S]GSH adducts. Therefore, we demonstrated that a combination of the [(35)S]GSH trapping and TDI assays is an effective method for detecting compounds potentially capable of generating highly reactive metabolites in the early stages of drug discovery.
Drug uptake in lysosomes of human Fa2N-4 cells assessed as inhibition of LysoTracker Red fluorescence at 500 uM after 30 mins relative to control
|
Homo sapiens
|
25.0
%
|
|
Journal : Drug Metab. Dispos.
Title : Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortalized human hepatocytes (Fa2N-4 cells).
Year : 2013
Volume : 41
Issue : 4
First Page : 897
Last Page : 905
Authors : Kazmi F, Hensley T, Pope C, Funk RS, Loewen GJ, Buckley DB, Parkinson A.
Abstract : Lipophilic (logP > 1) and amphiphilic drugs (also known as cationic amphiphilic drugs) with ionizable amines (pKa > 6) can accumulate in lysosomes, a process known as lysosomal trapping. This process contributes to presystemic extraction by lysosome-rich organs (such as liver and lung), which, together with the binding of lipophilic amines to phospholipids, contributes to the large volume of distribution characteristic of numerous cardiovascular and central nervous system drugs. Accumulation of lipophilic amines in lysosomes has been implicated as a cause of phospholipidosis. Furthermore, elevated levels of lipophilic amines in lysosomes can lead to high organ-to-blood ratios of drugs that can be mistaken for active drug transport. In the present study, we describe an in vitro fluorescence-based method (using the lysosome-specific probe LysoTracker Red) to identify lysosomotropic agents in immortalized hepatocytes (Fa2N-4 cells). A diverse set of compounds with various physicochemical properties were tested, such as acids, bases, and zwitterions. In addition, the partitioning of the nonlysosomotropic atorvastatin (an anion) and the lysosomotropics propranolol and imipramine (cations) were quantified in Fa2N-4 cells in the presence or absence of various lysosomotropic or nonlysosomotropic agents and inhibitors of lysosomal sequestration (NH4Cl, nigericin, and monensin). Cellular partitioning of propranolol and imipramine was markedly reduced (by at least 40%) by NH4Cl, nigericin, or monensin. Lysosomotropic drugs also inhibited the partitioning of propranolol by at least 50%, with imipramine partitioning affected to a lesser degree. This study demonstrates the usefulness of immortalized hepatocytes (Fa2N-4 cells) for determining the lysosomal sequestration of lipophilic amines.
Antiplasmodial activity against Plasmodium falciparum W2 infected in human erythrocytes after 48 hrs by [3H]-hypoxanthine incorporation assay
|
Plasmodium falciparum
|
5.0
nM
|
|
Journal : Bioorg. Med. Chem.
Title : Antimalarial benzoheterocyclic 4-aminoquinolines: Structure-activity relationship, in vivo evaluation, mechanistic and bioactivation studies.
Year : 2015
Volume : 23
Issue : 17
First Page : 5419
Last Page : 5432
Authors : Ongarora DS, Strydom N, Wicht K, Njoroge M, Wiesner L, Egan TJ, Wittlin S, Jurva U, Masimirembwa CM, Chibale K.
Abstract : A novel class of benzoheterocyclic analogues of amodiaquine designed to avoid toxic reactive metabolite formation was synthesized and evaluated for antiplasmodial activity against K1 (multidrug resistant) and NF54 (sensitive) strains of the malaria parasite Plasmodium falciparum. Structure-activity relationship studies led to the identification of highly promising analogues, the most potent of which had IC50s in the nanomolar range against both strains. The compounds further demonstrated good in vitro microsomal metabolic stability while those subjected to in vivo pharmacokinetic studies had desirable pharmacokinetic profiles. In vivo antimalarial efficacy in Plasmodium berghei infected mice was evaluated for four compounds, all of which showed good activity following oral administration. In particular, compound 19 completely cured treated mice at a low multiple dose of 4×10mg/kg. Mechanistic and bioactivation studies suggest hemozoin formation inhibition and a low likelihood of forming quinone-imine reactive metabolites, respectively.
Antiplasmodial activity against multidrug-resistant Plasmodium falciparum K1 infected in human erythrocytes after 48 hrs by [3H]-hypoxanthine incorporation assay
|
Plasmodium falciparum K1
|
8.0
nM
|
|
Journal : Bioorg. Med. Chem.
Title : Antimalarial benzoheterocyclic 4-aminoquinolines: Structure-activity relationship, in vivo evaluation, mechanistic and bioactivation studies.
Year : 2015
Volume : 23
Issue : 17
First Page : 5419
Last Page : 5432
Authors : Ongarora DS, Strydom N, Wicht K, Njoroge M, Wiesner L, Egan TJ, Wittlin S, Jurva U, Masimirembwa CM, Chibale K.
Abstract : A novel class of benzoheterocyclic analogues of amodiaquine designed to avoid toxic reactive metabolite formation was synthesized and evaluated for antiplasmodial activity against K1 (multidrug resistant) and NF54 (sensitive) strains of the malaria parasite Plasmodium falciparum. Structure-activity relationship studies led to the identification of highly promising analogues, the most potent of which had IC50s in the nanomolar range against both strains. The compounds further demonstrated good in vitro microsomal metabolic stability while those subjected to in vivo pharmacokinetic studies had desirable pharmacokinetic profiles. In vivo antimalarial efficacy in Plasmodium berghei infected mice was evaluated for four compounds, all of which showed good activity following oral administration. In particular, compound 19 completely cured treated mice at a low multiple dose of 4×10mg/kg. Mechanistic and bioactivation studies suggest hemozoin formation inhibition and a low likelihood of forming quinone-imine reactive metabolites, respectively.
Antiplasmodial activity against chloroquine-sensitive Plasmodium falciparum NF54 infected in human erythrocytes after 48 hrs by [3H]-hypoxanthine incorporation assay
|
Plasmodium falciparum NF54
|
4.0
nM
|
|
Journal : Bioorg. Med. Chem.
Title : Antimalarial benzoheterocyclic 4-aminoquinolines: Structure-activity relationship, in vivo evaluation, mechanistic and bioactivation studies.
Year : 2015
Volume : 23
Issue : 17
First Page : 5419
Last Page : 5432
Authors : Ongarora DS, Strydom N, Wicht K, Njoroge M, Wiesner L, Egan TJ, Wittlin S, Jurva U, Masimirembwa CM, Chibale K.
Abstract : A novel class of benzoheterocyclic analogues of amodiaquine designed to avoid toxic reactive metabolite formation was synthesized and evaluated for antiplasmodial activity against K1 (multidrug resistant) and NF54 (sensitive) strains of the malaria parasite Plasmodium falciparum. Structure-activity relationship studies led to the identification of highly promising analogues, the most potent of which had IC50s in the nanomolar range against both strains. The compounds further demonstrated good in vitro microsomal metabolic stability while those subjected to in vivo pharmacokinetic studies had desirable pharmacokinetic profiles. In vivo antimalarial efficacy in Plasmodium berghei infected mice was evaluated for four compounds, all of which showed good activity following oral administration. In particular, compound 19 completely cured treated mice at a low multiple dose of 4×10mg/kg. Mechanistic and bioactivation studies suggest hemozoin formation inhibition and a low likelihood of forming quinone-imine reactive metabolites, respectively.
Antimalarial activity against chloroquine-resistant Plasmodium falciparum Dd2 infected in human erythrocyte assessed as growth inhibition by SYBR Green-1 assay
|
Plasmodium falciparum Dd2
|
12.3
nM
|
|
Journal : Eur. J. Med. Chem.
Title : Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype.
Year : 2015
Volume : 102
First Page : 320
Last Page : 333
Authors : Santos SA, Lukens AK, Coelho L, Nogueira F, Wirth DF, Mazitschek R, Moreira R, Paulo A.
Abstract : A series of 3-piperidin-4-yl-1H-indoles with building block diversity was synthesized based on a hit derived from an HTS whole-cell screen against Plasmodium falciparum. Thirty-eight compounds were obtained following a three-step synthetic approach and evaluated for anti-parasitic activity. The SAR shows that 3-piperidin-4-yl-1H-indole is intolerant to most N-piperidinyl modifications. Nevertheless, we were able to identify a new compound (10d) with lead-like properties (MW = 305; cLogP = 2.42), showing antimalarial activity against drug-resistant and sensitive strains (EC50 values ∼ 3 μM), selectivity for malaria parasite and no cross-resistance with chloroquine, thus representing a potential new chemotype for further optimization towards novel and affordable antimalarial drugs.
Antimalarial activity against chloroquine-sensitive Plasmodium falciparum 3D7 infected in human erythrocyte assessed as growth inhibition by SYBR Green-1 assay
|
Plasmodium falciparum 3D7
|
5.85
nM
|
|
Journal : Eur. J. Med. Chem.
Title : Exploring the 3-piperidin-4-yl-1H-indole scaffold as a novel antimalarial chemotype.
Year : 2015
Volume : 102
First Page : 320
Last Page : 333
Authors : Santos SA, Lukens AK, Coelho L, Nogueira F, Wirth DF, Mazitschek R, Moreira R, Paulo A.
Abstract : A series of 3-piperidin-4-yl-1H-indoles with building block diversity was synthesized based on a hit derived from an HTS whole-cell screen against Plasmodium falciparum. Thirty-eight compounds were obtained following a three-step synthetic approach and evaluated for anti-parasitic activity. The SAR shows that 3-piperidin-4-yl-1H-indole is intolerant to most N-piperidinyl modifications. Nevertheless, we were able to identify a new compound (10d) with lead-like properties (MW = 305; cLogP = 2.42), showing antimalarial activity against drug-resistant and sensitive strains (EC50 values ∼ 3 μM), selectivity for malaria parasite and no cross-resistance with chloroquine, thus representing a potential new chemotype for further optimization towards novel and affordable antimalarial drugs.
Antiplasmodial activity against erythrocytic stage of chloroquine-resistant Plasmodium berghei ANKA infected in BALB/c mouse assessed as inhibition of parasitemia at 0.1 mg/kg/day, ip administered 3 hrs post infection for 4 days by Giemsa staining based microscopic assay relative to control
|
Plasmodium berghei ANKA
|
28.02
%
|
|
Journal : Eur J Med Chem
Title : 4-Aminoquinoline derivatives: Synthesis, in vitro and in vivo antiplasmodial activity against chloroquine-resistant parasites.
Year : 2016
Volume : 122
First Page : 394
Last Page : 407
Authors : Singh S, Agarwal D, Sharma K, Sharma M, Nielsen MA, Alifrangis M, Singh AK, Gupta RD, Awasthi SK.
Abstract : Synthetic quinoline derivatives continue to be considered as candidates for new drug discovery if they act against CQ-resistant strains of malaria even after the widespread emergence of resistance to CQ. In this study, we explored the activities of two series of new 4-aminoquinoline derivatives and found them to be effective against Plasmodium falciparum under in vitro conditions. Further, we selected four most active derivatives 1m, 1o, 2c and 2j and evaluated their antimalarial potential against Plasmodium berghei in vivo. These 4-aminoquinolines cured BALB/c mice infected with P. berghei. The ED50 values were calculated to be 2.062, 2.231, 1.431, 1.623 and 1.18 mg/kg of body weight for each of the compounds 1m, 1o, 2c, 2j and amodiaquine, respectively. Total doses of 500 mg/kg of body weight were well received. The study suggests that these new 4-aminoquinolines should be used for structure activity relationship to find lead molecules for treating multidrug-resistant Plasmodium falciparum and Plasmodium vivax.
Antiplasmodial activity against erythrocytic stage of chloroquine-resistant Plasmodium berghei ANKA infected in BALB/c mouse assessed as inhibition of parasitemia at 1 mg/kg/day, ip administered 3 hrs post infection for 4 days by Giemsa staining based microscopic assay relative to control
|
Plasmodium berghei ANKA
|
48.24
%
|
|
Journal : Eur J Med Chem
Title : 4-Aminoquinoline derivatives: Synthesis, in vitro and in vivo antiplasmodial activity against chloroquine-resistant parasites.
Year : 2016
Volume : 122
First Page : 394
Last Page : 407
Authors : Singh S, Agarwal D, Sharma K, Sharma M, Nielsen MA, Alifrangis M, Singh AK, Gupta RD, Awasthi SK.
Abstract : Synthetic quinoline derivatives continue to be considered as candidates for new drug discovery if they act against CQ-resistant strains of malaria even after the widespread emergence of resistance to CQ. In this study, we explored the activities of two series of new 4-aminoquinoline derivatives and found them to be effective against Plasmodium falciparum under in vitro conditions. Further, we selected four most active derivatives 1m, 1o, 2c and 2j and evaluated their antimalarial potential against Plasmodium berghei in vivo. These 4-aminoquinolines cured BALB/c mice infected with P. berghei. The ED50 values were calculated to be 2.062, 2.231, 1.431, 1.623 and 1.18 mg/kg of body weight for each of the compounds 1m, 1o, 2c, 2j and amodiaquine, respectively. Total doses of 500 mg/kg of body weight were well received. The study suggests that these new 4-aminoquinolines should be used for structure activity relationship to find lead molecules for treating multidrug-resistant Plasmodium falciparum and Plasmodium vivax.
Antiplasmodial activity against erythrocytic stage of chloroquine-resistant Plasmodium berghei ANKA infected in BALB/c mouse assessed as inhibition of parasitemia at 5 mg/kg/day, ip administered 3 hrs post infection for 4 days by Giemsa staining based microscopic assay relative to control
|
Plasmodium berghei ANKA
|
67.14
%
|
|
Journal : Eur J Med Chem
Title : 4-Aminoquinoline derivatives: Synthesis, in vitro and in vivo antiplasmodial activity against chloroquine-resistant parasites.
Year : 2016
Volume : 122
First Page : 394
Last Page : 407
Authors : Singh S, Agarwal D, Sharma K, Sharma M, Nielsen MA, Alifrangis M, Singh AK, Gupta RD, Awasthi SK.
Abstract : Synthetic quinoline derivatives continue to be considered as candidates for new drug discovery if they act against CQ-resistant strains of malaria even after the widespread emergence of resistance to CQ. In this study, we explored the activities of two series of new 4-aminoquinoline derivatives and found them to be effective against Plasmodium falciparum under in vitro conditions. Further, we selected four most active derivatives 1m, 1o, 2c and 2j and evaluated their antimalarial potential against Plasmodium berghei in vivo. These 4-aminoquinolines cured BALB/c mice infected with P. berghei. The ED50 values were calculated to be 2.062, 2.231, 1.431, 1.623 and 1.18 mg/kg of body weight for each of the compounds 1m, 1o, 2c, 2j and amodiaquine, respectively. Total doses of 500 mg/kg of body weight were well received. The study suggests that these new 4-aminoquinolines should be used for structure activity relationship to find lead molecules for treating multidrug-resistant Plasmodium falciparum and Plasmodium vivax.
Antiplasmodial activity against erythrocytic stage of chloroquine-resistant Plasmodium berghei ANKA infected in BALB/c mouse assessed as inhibition of parasitemia at 10 mg/kg/day, ip administered 3 hrs post infection for 4 days by Giemsa staining based microscopic assay relative to control
|
Plasmodium berghei ANKA
|
94.07
%
|
|
Journal : Eur J Med Chem
Title : 4-Aminoquinoline derivatives: Synthesis, in vitro and in vivo antiplasmodial activity against chloroquine-resistant parasites.
Year : 2016
Volume : 122
First Page : 394
Last Page : 407
Authors : Singh S, Agarwal D, Sharma K, Sharma M, Nielsen MA, Alifrangis M, Singh AK, Gupta RD, Awasthi SK.
Abstract : Synthetic quinoline derivatives continue to be considered as candidates for new drug discovery if they act against CQ-resistant strains of malaria even after the widespread emergence of resistance to CQ. In this study, we explored the activities of two series of new 4-aminoquinoline derivatives and found them to be effective against Plasmodium falciparum under in vitro conditions. Further, we selected four most active derivatives 1m, 1o, 2c and 2j and evaluated their antimalarial potential against Plasmodium berghei in vivo. These 4-aminoquinolines cured BALB/c mice infected with P. berghei. The ED50 values were calculated to be 2.062, 2.231, 1.431, 1.623 and 1.18 mg/kg of body weight for each of the compounds 1m, 1o, 2c, 2j and amodiaquine, respectively. Total doses of 500 mg/kg of body weight were well received. The study suggests that these new 4-aminoquinolines should be used for structure activity relationship to find lead molecules for treating multidrug-resistant Plasmodium falciparum and Plasmodium vivax.
Antiplasmodial activity against chloroquine-resistant Plasmodium falciparum W2 infected in human A+ erythrocytes assessed as inhibition of [3H]-hypoxanthine incorporation after 42 hrs by beta counting method
|
Plasmodium falciparum
|
6.0
nM
|
|
Journal : Eur J Med Chem
Title : Evaluation of 7-arylaminopyrazolo[1,5-a]pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf-dihydroorotate dehydrogenase inhibitors.
Year : 2017
Volume : 126
First Page : 72
Last Page : 83
Authors : Azeredo LFSP, Coutinho JP, Jabor VAP, Feliciano PR, Nonato MC, Kaiser CR, Menezes CMS, Hammes ASO, Caffarena ER, Hoelz LVB, de Souza NB, Pereira GAN, Cerávolo IP, Krettli AU, Boechat N.
Abstract : Malaria remains one of the most serious global infectious diseases. An important target for antimalarial chemotherapy is the enzyme dihydroorotate dehydrogenase from Plasmodium falciparum (PfDHODH), which is responsible for the conversion of dihydroorotate to orotate in the de novo pyrimidine biosynthetic pathway. In this study, we have designed and synthesized fifteen 7-arylpyrazolo[1,5-a]pyrimidine derivatives using ring bioisosteric replacement and molecular hybridization of functional groups based on the highly active 5-methyl-N-(naphthalen-2-yl)-2-(trifluoromethyl)- [1,2,4]triazolo[1,5-a]pyrimidin-7-amine. The compounds were tested against Plasmodium falciparum, as antimalarials in mice with P. berghei, and as inhibitors of PfDHODH. Thirteen compounds were found to be active against P. falciparum, with IC50 values ranging from 1.2 ± 0.3 to 92 ± 26 μM in the anti-HRP2 and hypoxanthine assays. Four compounds showed the highest selective index (SI), which is a ratio between cytotoxicity and activity in vitro. The inhibition of PfDHODH showed that compound 30 (R2 = CH3; R5 = CF3; Ar = 7-β-naphthyl) displayed higher and selective inhibitory activity, with IC50 = 0.16 ± 0.01 μM, followed by 25 (R2 = CH3; R5 = CH3; Ar = 7-β-Naphthyl) and 19 (R2 = CF3; R5 = CF3; Ar = 7-β-naphthyl), with IC50 = 4 ± 1 μM and 6 ± 1 μM, respectively. The trifluoromethyl group at the 2- or 5-positions of the pyrazolo[1,5-a]pyrimidine ring led to increased drug activity. The docking results agreed with the values obtained from enzymatic assays.
Antiplasmodial activity against chloroquine-resistant Plasmodium falciparum W2 infected in human A+ erythrocytes after 48 hrs by SYBR Green based fluorescence assay
|
Plasmodium falciparum
|
6.0
nM
|
|
Journal : Eur J Med Chem
Title : Evaluation of 7-arylaminopyrazolo[1,5-a]pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf-dihydroorotate dehydrogenase inhibitors.
Year : 2017
Volume : 126
First Page : 72
Last Page : 83
Authors : Azeredo LFSP, Coutinho JP, Jabor VAP, Feliciano PR, Nonato MC, Kaiser CR, Menezes CMS, Hammes ASO, Caffarena ER, Hoelz LVB, de Souza NB, Pereira GAN, Cerávolo IP, Krettli AU, Boechat N.
Abstract : Malaria remains one of the most serious global infectious diseases. An important target for antimalarial chemotherapy is the enzyme dihydroorotate dehydrogenase from Plasmodium falciparum (PfDHODH), which is responsible for the conversion of dihydroorotate to orotate in the de novo pyrimidine biosynthetic pathway. In this study, we have designed and synthesized fifteen 7-arylpyrazolo[1,5-a]pyrimidine derivatives using ring bioisosteric replacement and molecular hybridization of functional groups based on the highly active 5-methyl-N-(naphthalen-2-yl)-2-(trifluoromethyl)- [1,2,4]triazolo[1,5-a]pyrimidin-7-amine. The compounds were tested against Plasmodium falciparum, as antimalarials in mice with P. berghei, and as inhibitors of PfDHODH. Thirteen compounds were found to be active against P. falciparum, with IC50 values ranging from 1.2 ± 0.3 to 92 ± 26 μM in the anti-HRP2 and hypoxanthine assays. Four compounds showed the highest selective index (SI), which is a ratio between cytotoxicity and activity in vitro. The inhibition of PfDHODH showed that compound 30 (R2 = CH3; R5 = CF3; Ar = 7-β-naphthyl) displayed higher and selective inhibitory activity, with IC50 = 0.16 ± 0.01 μM, followed by 25 (R2 = CH3; R5 = CH3; Ar = 7-β-Naphthyl) and 19 (R2 = CF3; R5 = CF3; Ar = 7-β-naphthyl), with IC50 = 4 ± 1 μM and 6 ± 1 μM, respectively. The trifluoromethyl group at the 2- or 5-positions of the pyrazolo[1,5-a]pyrimidine ring led to increased drug activity. The docking results agreed with the values obtained from enzymatic assays.
Antimalarial activity against Plasmodium berghei NK65 infected in mouse assessed as reduction in parasitemia at 5 mg/kg, po administered daily for 3 consecutive days starting 24 hrs post inoculum challenge containing parasitized red blood cells measured on day 5 by giemsa staining based microscopic method
|
Plasmodium berghei
|
100.0
%
|
|
Journal : Eur J Med Chem
Title : Evaluation of 7-arylaminopyrazolo[1,5-a]pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf-dihydroorotate dehydrogenase inhibitors.
Year : 2017
Volume : 126
First Page : 72
Last Page : 83
Authors : Azeredo LFSP, Coutinho JP, Jabor VAP, Feliciano PR, Nonato MC, Kaiser CR, Menezes CMS, Hammes ASO, Caffarena ER, Hoelz LVB, de Souza NB, Pereira GAN, Cerávolo IP, Krettli AU, Boechat N.
Abstract : Malaria remains one of the most serious global infectious diseases. An important target for antimalarial chemotherapy is the enzyme dihydroorotate dehydrogenase from Plasmodium falciparum (PfDHODH), which is responsible for the conversion of dihydroorotate to orotate in the de novo pyrimidine biosynthetic pathway. In this study, we have designed and synthesized fifteen 7-arylpyrazolo[1,5-a]pyrimidine derivatives using ring bioisosteric replacement and molecular hybridization of functional groups based on the highly active 5-methyl-N-(naphthalen-2-yl)-2-(trifluoromethyl)- [1,2,4]triazolo[1,5-a]pyrimidin-7-amine. The compounds were tested against Plasmodium falciparum, as antimalarials in mice with P. berghei, and as inhibitors of PfDHODH. Thirteen compounds were found to be active against P. falciparum, with IC50 values ranging from 1.2 ± 0.3 to 92 ± 26 μM in the anti-HRP2 and hypoxanthine assays. Four compounds showed the highest selective index (SI), which is a ratio between cytotoxicity and activity in vitro. The inhibition of PfDHODH showed that compound 30 (R2 = CH3; R5 = CF3; Ar = 7-β-naphthyl) displayed higher and selective inhibitory activity, with IC50 = 0.16 ± 0.01 μM, followed by 25 (R2 = CH3; R5 = CH3; Ar = 7-β-Naphthyl) and 19 (R2 = CF3; R5 = CF3; Ar = 7-β-naphthyl), with IC50 = 4 ± 1 μM and 6 ± 1 μM, respectively. The trifluoromethyl group at the 2- or 5-positions of the pyrazolo[1,5-a]pyrimidine ring led to increased drug activity. The docking results agreed with the values obtained from enzymatic assays.
Antimalarial activity against Plasmodium berghei NK65 infected in mouse assessed as reduction in parasitemia at 5 mg/kg, po administered daily for 3 consecutive days starting 24 hrs post inoculum challenge containing parasitized red blood cells measured on day 7 by giemsa staining based microscopic method
|
Plasmodium berghei
|
100.0
%
|
|
Journal : Eur J Med Chem
Title : Evaluation of 7-arylaminopyrazolo[1,5-a]pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf-dihydroorotate dehydrogenase inhibitors.
Year : 2017
Volume : 126
First Page : 72
Last Page : 83
Authors : Azeredo LFSP, Coutinho JP, Jabor VAP, Feliciano PR, Nonato MC, Kaiser CR, Menezes CMS, Hammes ASO, Caffarena ER, Hoelz LVB, de Souza NB, Pereira GAN, Cerávolo IP, Krettli AU, Boechat N.
Abstract : Malaria remains one of the most serious global infectious diseases. An important target for antimalarial chemotherapy is the enzyme dihydroorotate dehydrogenase from Plasmodium falciparum (PfDHODH), which is responsible for the conversion of dihydroorotate to orotate in the de novo pyrimidine biosynthetic pathway. In this study, we have designed and synthesized fifteen 7-arylpyrazolo[1,5-a]pyrimidine derivatives using ring bioisosteric replacement and molecular hybridization of functional groups based on the highly active 5-methyl-N-(naphthalen-2-yl)-2-(trifluoromethyl)- [1,2,4]triazolo[1,5-a]pyrimidin-7-amine. The compounds were tested against Plasmodium falciparum, as antimalarials in mice with P. berghei, and as inhibitors of PfDHODH. Thirteen compounds were found to be active against P. falciparum, with IC50 values ranging from 1.2 ± 0.3 to 92 ± 26 μM in the anti-HRP2 and hypoxanthine assays. Four compounds showed the highest selective index (SI), which is a ratio between cytotoxicity and activity in vitro. The inhibition of PfDHODH showed that compound 30 (R2 = CH3; R5 = CF3; Ar = 7-β-naphthyl) displayed higher and selective inhibitory activity, with IC50 = 0.16 ± 0.01 μM, followed by 25 (R2 = CH3; R5 = CH3; Ar = 7-β-Naphthyl) and 19 (R2 = CF3; R5 = CF3; Ar = 7-β-naphthyl), with IC50 = 4 ± 1 μM and 6 ± 1 μM, respectively. The trifluoromethyl group at the 2- or 5-positions of the pyrazolo[1,5-a]pyrimidine ring led to increased drug activity. The docking results agreed with the values obtained from enzymatic assays.
Antimalarial activity against Plasmodium berghei NK65 infected in mouse assessed as reduction in parasitemia at 5 mg/kg, po administered daily for 3 consecutive days starting 24 hrs post inoculum challenge containing parasitized red blood cells measured on day 9 by giemsa staining based microscopic method
|
Plasmodium berghei
|
100.0
%
|
|
Journal : Eur J Med Chem
Title : Evaluation of 7-arylaminopyrazolo[1,5-a]pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf-dihydroorotate dehydrogenase inhibitors.
Year : 2017
Volume : 126
First Page : 72
Last Page : 83
Authors : Azeredo LFSP, Coutinho JP, Jabor VAP, Feliciano PR, Nonato MC, Kaiser CR, Menezes CMS, Hammes ASO, Caffarena ER, Hoelz LVB, de Souza NB, Pereira GAN, Cerávolo IP, Krettli AU, Boechat N.
Abstract : Malaria remains one of the most serious global infectious diseases. An important target for antimalarial chemotherapy is the enzyme dihydroorotate dehydrogenase from Plasmodium falciparum (PfDHODH), which is responsible for the conversion of dihydroorotate to orotate in the de novo pyrimidine biosynthetic pathway. In this study, we have designed and synthesized fifteen 7-arylpyrazolo[1,5-a]pyrimidine derivatives using ring bioisosteric replacement and molecular hybridization of functional groups based on the highly active 5-methyl-N-(naphthalen-2-yl)-2-(trifluoromethyl)- [1,2,4]triazolo[1,5-a]pyrimidin-7-amine. The compounds were tested against Plasmodium falciparum, as antimalarials in mice with P. berghei, and as inhibitors of PfDHODH. Thirteen compounds were found to be active against P. falciparum, with IC50 values ranging from 1.2 ± 0.3 to 92 ± 26 μM in the anti-HRP2 and hypoxanthine assays. Four compounds showed the highest selective index (SI), which is a ratio between cytotoxicity and activity in vitro. The inhibition of PfDHODH showed that compound 30 (R2 = CH3; R5 = CF3; Ar = 7-β-naphthyl) displayed higher and selective inhibitory activity, with IC50 = 0.16 ± 0.01 μM, followed by 25 (R2 = CH3; R5 = CH3; Ar = 7-β-Naphthyl) and 19 (R2 = CF3; R5 = CF3; Ar = 7-β-naphthyl), with IC50 = 4 ± 1 μM and 6 ± 1 μM, respectively. The trifluoromethyl group at the 2- or 5-positions of the pyrazolo[1,5-a]pyrimidine ring led to increased drug activity. The docking results agreed with the values obtained from enzymatic assays.
Antimalarial activity against Plasmodium berghei NK65 infected in mouse assessed as reduction in parasitemia at 5 mg/kg, po administered daily for 3 consecutive days starting 24 hrs post inoculum challenge containing parasitized red blood cells measured on day 11 by giemsa staining based microscopic method
|
Plasmodium berghei
|
100.0
%
|
|
Journal : Eur J Med Chem
Title : Evaluation of 7-arylaminopyrazolo[1,5-a]pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf-dihydroorotate dehydrogenase inhibitors.
Year : 2017
Volume : 126
First Page : 72
Last Page : 83
Authors : Azeredo LFSP, Coutinho JP, Jabor VAP, Feliciano PR, Nonato MC, Kaiser CR, Menezes CMS, Hammes ASO, Caffarena ER, Hoelz LVB, de Souza NB, Pereira GAN, Cerávolo IP, Krettli AU, Boechat N.
Abstract : Malaria remains one of the most serious global infectious diseases. An important target for antimalarial chemotherapy is the enzyme dihydroorotate dehydrogenase from Plasmodium falciparum (PfDHODH), which is responsible for the conversion of dihydroorotate to orotate in the de novo pyrimidine biosynthetic pathway. In this study, we have designed and synthesized fifteen 7-arylpyrazolo[1,5-a]pyrimidine derivatives using ring bioisosteric replacement and molecular hybridization of functional groups based on the highly active 5-methyl-N-(naphthalen-2-yl)-2-(trifluoromethyl)- [1,2,4]triazolo[1,5-a]pyrimidin-7-amine. The compounds were tested against Plasmodium falciparum, as antimalarials in mice with P. berghei, and as inhibitors of PfDHODH. Thirteen compounds were found to be active against P. falciparum, with IC50 values ranging from 1.2 ± 0.3 to 92 ± 26 μM in the anti-HRP2 and hypoxanthine assays. Four compounds showed the highest selective index (SI), which is a ratio between cytotoxicity and activity in vitro. The inhibition of PfDHODH showed that compound 30 (R2 = CH3; R5 = CF3; Ar = 7-β-naphthyl) displayed higher and selective inhibitory activity, with IC50 = 0.16 ± 0.01 μM, followed by 25 (R2 = CH3; R5 = CH3; Ar = 7-β-Naphthyl) and 19 (R2 = CF3; R5 = CF3; Ar = 7-β-naphthyl), with IC50 = 4 ± 1 μM and 6 ± 1 μM, respectively. The trifluoromethyl group at the 2- or 5-positions of the pyrazolo[1,5-a]pyrimidine ring led to increased drug activity. The docking results agreed with the values obtained from enzymatic assays.
Antimalarial activity against blood stage form of Plasmodium berghei infected in mouse assessed as inhibition of parasitemia at 50 mg/kg, po administered on day 1 post infection measured on day 3 by scouting assay relative to control
|
Plasmodium berghei
|
95.5
%
|
|
Journal : J Med Chem
Title : Design and Synthesis of Orally Bioavailable Piperazine Substituted 4(1H)-Quinolones with Potent Antimalarial Activity: Structure-Activity and Structure-Property Relationship Studies.
Year : 2018
Volume : 61
Issue : 4
First Page : 1450
Last Page : 1473
Authors : Neelarapu R, Maignan JR, Lichorowic CL, Monastyrskyi A, Mutka TS, LaCrue AN, Blake LD, Casandra D, Mashkouri S, Burrows JN, Willis PA, Kyle DE, Manetsch R.
Abstract : Malaria deaths have been decreasing over the last 10-15 years, with global mortality rates having fallen by 47% since 2000. While the World Health Organization (WHO) recommends the use of artemisinin-based combination therapies (ACTs) to combat malaria, the emergence of artemisinin resistant strains underscores the need to develop new antimalarial drugs. Recent in vivo efficacy improvements of the historical antimalarial ICI 56,780 have been reported, however, with the poor solubility and rapid development of resistance, this compound requires further optimization. A series of piperazine-containing 4(1H)-quinolones with greatly enhanced solubility were developed utilizing structure-activity relationship (SAR) and structure-property relationship (SPR) studies. Furthermore, promising compounds were chosen for an in vivo scouting assay to narrow selection for testing in an in vivo Thompson test. Finally, two piperazine-containing 4(1H)-quinolones were curative in the conventional Thompson test and also displayed in vivo activity against the liver stages of the parasite.
Antimalarial activity against blood stage form of Plasmodium berghei infected in mouse assessed as inhibition of parasitemia at 50 mg/kg, po administered on day 1 post infection measured on day 6 by scouting assay relative to control
|
Plasmodium berghei
|
99.9
%
|
|
Journal : J Med Chem
Title : Design and Synthesis of Orally Bioavailable Piperazine Substituted 4(1H)-Quinolones with Potent Antimalarial Activity: Structure-Activity and Structure-Property Relationship Studies.
Year : 2018
Volume : 61
Issue : 4
First Page : 1450
Last Page : 1473
Authors : Neelarapu R, Maignan JR, Lichorowic CL, Monastyrskyi A, Mutka TS, LaCrue AN, Blake LD, Casandra D, Mashkouri S, Burrows JN, Willis PA, Kyle DE, Manetsch R.
Abstract : Malaria deaths have been decreasing over the last 10-15 years, with global mortality rates having fallen by 47% since 2000. While the World Health Organization (WHO) recommends the use of artemisinin-based combination therapies (ACTs) to combat malaria, the emergence of artemisinin resistant strains underscores the need to develop new antimalarial drugs. Recent in vivo efficacy improvements of the historical antimalarial ICI 56,780 have been reported, however, with the poor solubility and rapid development of resistance, this compound requires further optimization. A series of piperazine-containing 4(1H)-quinolones with greatly enhanced solubility were developed utilizing structure-activity relationship (SAR) and structure-property relationship (SPR) studies. Furthermore, promising compounds were chosen for an in vivo scouting assay to narrow selection for testing in an in vivo Thompson test. Finally, two piperazine-containing 4(1H)-quinolones were curative in the conventional Thompson test and also displayed in vivo activity against the liver stages of the parasite.
Inhibition of SARS-CoV-2 pseudoparticle entry in Huh-7 cells, assessed by luciferase assay after 72 hrs
|
Homo sapiens
|
70.0
%
|
|
Inhibition of SARS-CoV-2 pseudoparticle entry in Huh-7 cells, assessed by luciferase assay after 72 hrs
|
Homo sapiens
|
90.0
%
|
|
Title : Human organs-on-chips as tools for repurposing approved drugs as potential influenza and COVID19 therapeutics in viral pandemics
Year : 2020
Authors : Longlong Si, Haiqing Bai, Melissa Rodas, Wuji Cao, Crystal Yuri Oh, Amanda Jiang, Atiq Nurani, Danni Y. Zhu, Girija Goyal, Sarah E. Gilpin, Rachelle Prantil- Baun, and Donald E. Ingber
Abstract : Rapidly spreading viral pandemics, such as those caused by influenza and SAR-CoV-2 (COVID19), require rapid action and the fastest way to combat this challenge is by repurposing existing drugs as anti-viral therapeutics. Here we first show that human organ-on-a-chip (Organ Chip) microfluidic culture devices lined by a highly differentiated, primary, human lung airway epithelium cultured under an air-liquid interface and fed by continuous medium flow can be used to model virus entry, replication, strain-dependent virulence, host cytokine production, and recruitment of circulating immune cells in response to infection by influenza, as well as effects of existing and novel therapeutics. These Airway Chips, which contain human lung epithelial cells that express high levels of ACE2 and TMPRSS2, were then used to assess the inhibitory activities of 7 clinically approved drugs (chloroquine, arbidol, toremifene, clomiphene, amodiaquine, verapamil, and amiodarone) that we found inhibit infection by viral pseudoparticles expressing SARS-CoV-2 spike protein in human Huh-7 cells, and others recently showed suppress infection by native SARS-CoV-2 in Vero cells. However, when these drugs were administered under flow at the maximal concentration in blood reported in clinical studies in human Airway Chips, only two of these drugs amodiaquine and toremifene significantly inhibited entry of the pseudotyped SARS-CoV-2 virus. This work suggests that human Organ Chip technology may be used in conjunction with existing rapid cell-based screening assays to study human disease pathogenesis and expedite drug repurposing in biothreat crises caused by pandemic viruses.
Inhibition of SARS-CoV-2 pseudoparticle entry in human lung Airway Chip at reported drug Cmax, assessed by qRT-PCR after 48 hrs
|
Homo sapiens
|
60.0
%
|
|
Title : Human organs-on-chips as tools for repurposing approved drugs as potential influenza and COVID19 therapeutics in viral pandemics
Year : 2020
Authors : Longlong Si, Haiqing Bai, Melissa Rodas, Wuji Cao, Crystal Yuri Oh, Amanda Jiang, Atiq Nurani, Danni Y. Zhu, Girija Goyal, Sarah E. Gilpin, Rachelle Prantil- Baun, and Donald E. Ingber
Abstract : Rapidly spreading viral pandemics, such as those caused by influenza and SAR-CoV-2 (COVID19), require rapid action and the fastest way to combat this challenge is by repurposing existing drugs as anti-viral therapeutics. Here we first show that human organ-on-a-chip (Organ Chip) microfluidic culture devices lined by a highly differentiated, primary, human lung airway epithelium cultured under an air-liquid interface and fed by continuous medium flow can be used to model virus entry, replication, strain-dependent virulence, host cytokine production, and recruitment of circulating immune cells in response to infection by influenza, as well as effects of existing and novel therapeutics. These Airway Chips, which contain human lung epithelial cells that express high levels of ACE2 and TMPRSS2, were then used to assess the inhibitory activities of 7 clinically approved drugs (chloroquine, arbidol, toremifene, clomiphene, amodiaquine, verapamil, and amiodarone) that we found inhibit infection by viral pseudoparticles expressing SARS-CoV-2 spike protein in human Huh-7 cells, and others recently showed suppress infection by native SARS-CoV-2 in Vero cells. However, when these drugs were administered under flow at the maximal concentration in blood reported in clinical studies in human Airway Chips, only two of these drugs amodiaquine and toremifene significantly inhibited entry of the pseudotyped SARS-CoV-2 virus. This work suggests that human Organ Chip technology may be used in conjunction with existing rapid cell-based screening assays to study human disease pathogenesis and expedite drug repurposing in biothreat crises caused by pandemic viruses.
Assessment of cytotoxicity in Huh-7 cells, assessed as % inhibition of cell viability by Celltiter-Glo assay after 48 hrs
|
Homo sapiens
|
1.0
%
|
|
Assessment of cytotoxicity in Huh-7 cells, assessed as % inhibition of cell viability by Celltiter-Glo assay after 48 hrs
|
Homo sapiens
|
-5.0
%
|
|
Title : Human organs-on-chips as tools for repurposing approved drugs as potential influenza and COVID19 therapeutics in viral pandemics
Year : 2020
Authors : Longlong Si, Haiqing Bai, Melissa Rodas, Wuji Cao, Crystal Yuri Oh, Amanda Jiang, Atiq Nurani, Danni Y. Zhu, Girija Goyal, Sarah E. Gilpin, Rachelle Prantil- Baun, and Donald E. Ingber
Abstract : Rapidly spreading viral pandemics, such as those caused by influenza and SAR-CoV-2 (COVID19), require rapid action and the fastest way to combat this challenge is by repurposing existing drugs as anti-viral therapeutics. Here we first show that human organ-on-a-chip (Organ Chip) microfluidic culture devices lined by a highly differentiated, primary, human lung airway epithelium cultured under an air-liquid interface and fed by continuous medium flow can be used to model virus entry, replication, strain-dependent virulence, host cytokine production, and recruitment of circulating immune cells in response to infection by influenza, as well as effects of existing and novel therapeutics. These Airway Chips, which contain human lung epithelial cells that express high levels of ACE2 and TMPRSS2, were then used to assess the inhibitory activities of 7 clinically approved drugs (chloroquine, arbidol, toremifene, clomiphene, amodiaquine, verapamil, and amiodarone) that we found inhibit infection by viral pseudoparticles expressing SARS-CoV-2 spike protein in human Huh-7 cells, and others recently showed suppress infection by native SARS-CoV-2 in Vero cells. However, when these drugs were administered under flow at the maximal concentration in blood reported in clinical studies in human Airway Chips, only two of these drugs amodiaquine and toremifene significantly inhibited entry of the pseudotyped SARS-CoV-2 virus. This work suggests that human Organ Chip technology may be used in conjunction with existing rapid cell-based screening assays to study human disease pathogenesis and expedite drug repurposing in biothreat crises caused by pandemic viruses.
Antimalarial activity against chloroquine-resistant and mefloquine-sensitive Plasmodium falciparum W2 ring stage form infected in human erythrocytes by spectrophotometric analysis
|
Plasmodium falciparum
|
6.0
nM
|
|
Journal : Bioorg Med Chem
Title : New hybrid trifluoromethylquinolines as antiplasmodium agents.
Year : 2019
Volume : 27
Issue : 6
First Page : 1002
Last Page : 1008
Authors : da Silva RMRJ, Gandi MO, Mendonça JS, Carvalho AS, Coutinho JP, Aguiar ACC, Krettli AU, Boechat N.
Abstract : Malaria remains a major public health problem worldwide, and it is responsible for high rates of morbidity and mortality. Resistance to current antimalarial drugs has been identified, and new drugs are urgently needed. In this study, we designed and synthesized seventeen novel quinolines based on the structures of mefloquine ((2,8-bis(trifluoromethyl)quinolin-4-yl)(piperidin-2-yl)methanol) and amodiaquine (4-((7-chloroquinolin-4-yl)amino)-2-((diethylamino)methyl)phenol) using ring bioisosteric replacement and molecular hybridization of the functional groups. The compounds were evaluated in vitro against Plasmodium falciparum and in vivo in mice infected with P. berghei. All derivatives presented anti-P. falciparum activity with IC50 values ranging from 0.083 to 33.0 µM. The compound with the best anti-P. falciparum activity was N-(5-methyl-4H-1,2,4-triazol-3-yl)-2,8-bis(trifluoromethyl)quinolin-4-amine (12) which showed an IC50 of 0.083 µM. The three most active compounds were selected for antimalarial activity tests against P. berghei-infected mice. Compound 12 was the most active on the 5th day after infection, reducing parasitemia by 66%, which is consistent with its in vitro activity. This is an important result as 12, a simpler molecule than mefloquine, does not contain the stereogenic center, and consequently, its synthesis in the laboratory is easier and less expensive. This system proved promising for the design of potential antimalarial compounds.
Antimalarial activity against Plasmodium berghei infected in mouse assessed as inhibition of parasitemia at 50 mg/kg, po administered as single dose measured on day 3 post drug exposure relative to untreated control
|
Plasmodium berghei
|
95.5
%
|
|
Journal : J Med Chem
Title : ICI 56,780 Optimization: Structure-Activity Relationship Studies of 7-(2-Phenoxyethoxy)-4(1H)-quinolones with Antimalarial Activity.
Year : 2016
Volume : 59
Issue : 14
First Page : 6943
Last Page : 6960
Authors : Maignan JR, Lichorowic CL, Giarrusso J, Blake LD, Casandra D, Mutka TS, LaCrue AN, Burrows JN, Willis PA, Kyle DE, Manetsch R.
Abstract : Though malaria mortality rates are down 48% globally since 2000, reported occurrences of resistance against current therapeutics threaten to reverse that progress. Recently, antimalarials that were once considered unsuitable therapeutic agents have been revisited to improve physicochemical properties and efficacy required for selection as a drug candidate. One such compound is 4(1H)-quinolone ICI 56,780, which is known to be a causal prophylactic that also displays blood schizonticidal activity against P. berghei. Rapid induction of parasite resistance, however, stalled its further development. We have completed a full structure-activity relationship study on 4(1H)-quinolones, focusing on the reduction of cross-resistance with atovaquone for activity against the clinical isolates W2 and TM90-C2B, as well as the improvement of microsomal stability. These studies revealed several frontrunner compounds with superb in vivo antimalarial activity. The best compounds were found to be curative with all mice surviving a Plasmodium berghei infection after 30 days.
Antimalarial activity against Plasmodium berghei infected in mouse assessed as inhibition of parasitemia at 50 mg/kg, po administered as single dose measured on day 6 post drug exposure relative to untreated control
|
Plasmodium berghei
|
99.9
%
|
|
Journal : J Med Chem
Title : ICI 56,780 Optimization: Structure-Activity Relationship Studies of 7-(2-Phenoxyethoxy)-4(1H)-quinolones with Antimalarial Activity.
Year : 2016
Volume : 59
Issue : 14
First Page : 6943
Last Page : 6960
Authors : Maignan JR, Lichorowic CL, Giarrusso J, Blake LD, Casandra D, Mutka TS, LaCrue AN, Burrows JN, Willis PA, Kyle DE, Manetsch R.
Abstract : Though malaria mortality rates are down 48% globally since 2000, reported occurrences of resistance against current therapeutics threaten to reverse that progress. Recently, antimalarials that were once considered unsuitable therapeutic agents have been revisited to improve physicochemical properties and efficacy required for selection as a drug candidate. One such compound is 4(1H)-quinolone ICI 56,780, which is known to be a causal prophylactic that also displays blood schizonticidal activity against P. berghei. Rapid induction of parasite resistance, however, stalled its further development. We have completed a full structure-activity relationship study on 4(1H)-quinolones, focusing on the reduction of cross-resistance with atovaquone for activity against the clinical isolates W2 and TM90-C2B, as well as the improvement of microsomal stability. These studies revealed several frontrunner compounds with superb in vivo antimalarial activity. The best compounds were found to be curative with all mice surviving a Plasmodium berghei infection after 30 days.
Antimalarial activity against Plasmodium berghei NK65 ANKA infected in Swiss Webster mouse assessed as reduction in parasitemia at 5 mg/kg, po by Peters test
|
Plasmodium berghei
|
99.0
%
|
|
Journal : J Med Chem
Title : Hit-to-Lead Studies for the Antimalarial Tetrahydroisoquinolone Carboxanilides.
Year : 2016
Volume : 59
Issue : 17
First Page : 7950
Last Page : 7962
Authors : Floyd DM, Stein P, Wang Z, Liu J, Castro S, Clark JA, Connelly M, Zhu F, Holbrook G, Matheny A, Sigal MS, Min J, Dhinakaran R, Krishnan S, Bashyum S, Knapp S, Guy RK.
Abstract : Phenotypic whole-cell screening in erythrocytic cocultures of Plasmodium falciparum identified a series of dihydroisoquinolones that possessed potent antimalarial activity against multiple resistant strains of P. falciparum in vitro and show no cytotoxicity to mammalian cells. Systematic structure-activity studies revealed relationships between potency and modifications at N-2, C-3, and C-4. Careful structure-property relationship studies, coupled with studies of metabolism, addressed the poor aqueous solubility and metabolic vulnerability, as well as potential toxicological effects, inherent in the more potent primary screening hits such as 10b. Analogues 13h and 13i, with structural modifications at each site, were shown to possess excellent antimalarial activity in vivo. The (+)-(3S,4S) enantiomer of 13i and similar analogues were identified as the more potent. On the basis of these studies, we have selected (+)-13i for further study as a preclinical candidate.
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
14.5
%
|
|
Title : Identification of inhibitors of SARS-Cov2 M-Pro enzymatic activity using a small molecule repurposing screen
Year : 2020
Authors : Maria Kuzikov, Elisa Costanzi, Jeanette Reinshagen, Francesca Esposito, Laura Vangeel, Markus Wolf, Bernhard Ellinger, Carsten Claussen, Gerd Geisslinger, Angela Corona, Daniela Iaconis, Carmine Talarico, Candida Manelfi, Rolando Cannalire, Giulia Rossetti, Jonas Gossen, Simone Albani, Francesco Musiani, Katja Herzog, Yang Ye, Barbara Giabbai, Nicola Demitri, Dirk Jochmans, Steven De Jonghe, Jasper Rymenants, Vincenzo Summa, Enzo Tramontano, Andrea R. Beccari, Pieter Leyssen, Paola Storici, Johan Neyts, Philip Gribbon, and Andrea Zaliani
Abstract : Compound repurposing is an important strategy being pursued in the identification of effective treatment against the SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (M-Pro), also termed 3CL-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyprotein into 11 non-structural proteins. We report the results of a screening campaign involving ca 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and chemicals regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, but we have also identified 68 compounds with IC50 lower than 1 uM and 127 compounds with IC50 lower than 5 uM. Profiling showed 67% of confirmed hits were selective (> 5 fold) against other Cys- and Ser- proteases (Chymotrypsin and Cathepsin-L) and MERS 3CL-Pro. Selected compounds were also analysed in their binding characteristics.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
74.34
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
74.34
%
|
|
Title : Cytopathic SARS-Cov2 screening on VERO-E6 cells in a large repurposing effort
Year : 2020
Authors : Andrea Zaliani, Laura Vangeel, Jeanette Reinshagen, Daniela Iaconis, Maria Kuzikov, Oliver Keminer, Markus Wolf, Bernhard Ellinger, Francesca Esposito, Angela Corona, Enzo Tramontano, Candida Manelfi, Katja Herzog, Dirk Jochmans, Steven De Jonghe, Winston Chiu, Thibault Francken, Joost Schepers, Caroline Collard, Kayvan Abbasi, Carsten Claussen , Vincenzo Summa, Andrea R. Beccari, Johan Neyts, Philip Gribbon and Pieter Leyssen
Abstract : Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.