Inhibition of HIV-1 protease in a cell culture assay using HIV-1 IIIB infected H9 cells.
|
Human immunodeficiency virus 1
|
30.0
nM
|
|
Journal : J. Med. Chem.
Title : Tipranavir (PNU-140690): a potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5,6-dihydro-4-hydroxy-2-pyrone sulfonamide class.
Year : 1998
Volume : 41
Issue : 18
First Page : 3467
Last Page : 3476
Authors : Turner SR, Strohbach JW, Tommasi RA, Aristoff PA, Johnson PD, Skulnick HI, Dolak LA, Seest EP, Tomich PK, Bohanon MJ, Horng MM, Lynn JC, Chong KT, Hinshaw RR, Watenpaugh KD, Janakiraman MN, Thaisrivongs S.
Abstract : A broad screening program previously identified phenprocoumon (1) as a small molecule template for inhibition of HIV protease. Subsequent modification of this lead through iterative cycles of structure-based design led to the activity enhancements of pyrone and dihydropyrone ring systems (II and V) and amide-based substitution (III). Incorporation of sulfonamide substitution within the dihydropyrone template provided a series of highly potent HIV protease inhibitors, with structure-activity relationships described in this paper. Crystallographic studies provided further information on important binding interactions responsible for high enzymatic binding. These studies culminated in compound VI, which inhibits HIV protease with a Ki value of 8 pM and shows an IC90 value of 100 nM in antiviral cell culture. Clinical trials of this compound (PNU-140690, Tipranavir) for treatment of HIV infection are currently underway.
Compound was tested for inhibition of HIV protease triple mutant (Q7K/L33I/L63I)
|
None
|
0.008
nM
|
|
Compound was tested for inhibition of HIV protease triple mutant (Q7K/L33I/L63I)
|
None
|
1.0
nM
|
|
Journal : J. Med. Chem.
Title : Structure-based design of HIV protease inhibitors: sulfonamide-containing 5,6-dihydro-4-hydroxy-2-pyrones as non-peptidic inhibitors.
Year : 1996
Volume : 39
Issue : 22
First Page : 4349
Last Page : 4353
Authors : Thaisrivongs S, Skulnick HI, Turner SR, Strohbach JW, Tommasi RA, Johnson PD, Aristoff PA, Judge TM, Gammill RB, Morris JK, Romines KR, Chrusciel RA, Hinshaw RR, Chong KT, Tarpley WG, Poppe SM, Slade DE, Lynn JC, Horng MM, Tomich PK, Seest EP, Dolak LA, Howe WJ, Howard GM, Watenpaugh KD.
Inhibitory activity against HIV-1 protease in tandem assay.
|
Human immunodeficiency virus 1
|
0.008
nM
|
|
Journal : J. Med. Chem.
Title : Tipranavir (PNU-140690): a potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5,6-dihydro-4-hydroxy-2-pyrone sulfonamide class.
Year : 1998
Volume : 41
Issue : 18
First Page : 3467
Last Page : 3476
Authors : Turner SR, Strohbach JW, Tommasi RA, Aristoff PA, Johnson PD, Skulnick HI, Dolak LA, Seest EP, Tomich PK, Bohanon MJ, Horng MM, Lynn JC, Chong KT, Hinshaw RR, Watenpaugh KD, Janakiraman MN, Thaisrivongs S.
Abstract : A broad screening program previously identified phenprocoumon (1) as a small molecule template for inhibition of HIV protease. Subsequent modification of this lead through iterative cycles of structure-based design led to the activity enhancements of pyrone and dihydropyrone ring systems (II and V) and amide-based substitution (III). Incorporation of sulfonamide substitution within the dihydropyrone template provided a series of highly potent HIV protease inhibitors, with structure-activity relationships described in this paper. Crystallographic studies provided further information on important binding interactions responsible for high enzymatic binding. These studies culminated in compound VI, which inhibits HIV protease with a Ki value of 8 pM and shows an IC90 value of 100 nM in antiviral cell culture. Clinical trials of this compound (PNU-140690, Tipranavir) for treatment of HIV infection are currently underway.
Tested for inhibition of HIV protease
|
None
|
30.0
nM
|
|
Journal : J. Med. Chem.
Title : Structure-based design of HIV protease inhibitors: sulfonamide-containing 5,6-dihydro-4-hydroxy-2-pyrones as non-peptidic inhibitors.
Year : 1996
Volume : 39
Issue : 22
First Page : 4349
Last Page : 4353
Authors : Thaisrivongs S, Skulnick HI, Turner SR, Strohbach JW, Tommasi RA, Johnson PD, Aristoff PA, Judge TM, Gammill RB, Morris JK, Romines KR, Chrusciel RA, Hinshaw RR, Chong KT, Tarpley WG, Poppe SM, Slade DE, Lynn JC, Horng MM, Tomich PK, Seest EP, Dolak LA, Howe WJ, Howard GM, Watenpaugh KD.
Antiviral activity against wild type HIV2 in CBMCs
|
Human immunodeficiency virus 2
|
160.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Natural polymorphisms in the human immunodeficiency virus type 2 protease can accelerate time to development of resistance to protease inhibitors.
Year : 2007
Volume : 51
Issue : 2
First Page : 604
Last Page : 610
Authors : Ntemgwa M, Brenner BG, Oliveira M, Moisi D, Wainberg MA.
Abstract : Human immunodeficiency virus type 2 (HIV-2) contains numerous natural polymorphisms in its protease (PR) gene that are implicated in drug resistance in the case of HIV-1. This study evaluated emergent PR resistance in HIV-2. Three HIV-2 isolates were selected for resistance to amprenavir (APV), nelfinavir (NFV), indinavir (IDV), and tipranavir (TPV) in cell culture. Genotypic analysis determined the time to the appearance of protease inhibitor (PI)-associated mutations compared to HIV-1. Phenotypic drug susceptibility assays were used to determine the levels of drug resistance. Within 10 to 15 weeks of serial passage, three major mutations--I54M, I82F, and L90M--arose in HIV-2 viral cultures exposed to APV, NFV, and IDV, whereas I82L was selected with TPV. After 25 weeks, other cultures had developed I50V and I84V mutations. In contrast, no major PI mutations were selected in HIV-1 over this period except for D30N in the context of NFV selective pressure. The baseline phenotypes of wild-type HIV-2 isolates were in the range observed for HIV-1, except for APV and NFV for which a lower degree of sensitivity was seen. The acquisition of the I54M, I84V, L90M, and L99F mutations resulted in multi-PI-resistant viruses, conferring 10-fold to more than 100-fold resistance. Of note, we observed a 62A/99F mutational motif that conferred high-level resistance to PIs, as well as novel secondary mutations, including 6F, 12A, and 21K. Thus, natural polymorphisms in HIV-2 may facilitate the selection of PI resistance. The increasing incidence of such polymorphisms in drug-naive HIV-1- and HIV-2-infected persons is of concern.
Antiviral activity against HIV2 isolate CBL20, CBL23, MVP15132 with 182F mutation in CBMCs
|
Human immunodeficiency virus 2
|
306.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Natural polymorphisms in the human immunodeficiency virus type 2 protease can accelerate time to development of resistance to protease inhibitors.
Year : 2007
Volume : 51
Issue : 2
First Page : 604
Last Page : 610
Authors : Ntemgwa M, Brenner BG, Oliveira M, Moisi D, Wainberg MA.
Abstract : Human immunodeficiency virus type 2 (HIV-2) contains numerous natural polymorphisms in its protease (PR) gene that are implicated in drug resistance in the case of HIV-1. This study evaluated emergent PR resistance in HIV-2. Three HIV-2 isolates were selected for resistance to amprenavir (APV), nelfinavir (NFV), indinavir (IDV), and tipranavir (TPV) in cell culture. Genotypic analysis determined the time to the appearance of protease inhibitor (PI)-associated mutations compared to HIV-1. Phenotypic drug susceptibility assays were used to determine the levels of drug resistance. Within 10 to 15 weeks of serial passage, three major mutations--I54M, I82F, and L90M--arose in HIV-2 viral cultures exposed to APV, NFV, and IDV, whereas I82L was selected with TPV. After 25 weeks, other cultures had developed I50V and I84V mutations. In contrast, no major PI mutations were selected in HIV-1 over this period except for D30N in the context of NFV selective pressure. The baseline phenotypes of wild-type HIV-2 isolates were in the range observed for HIV-1, except for APV and NFV for which a lower degree of sensitivity was seen. The acquisition of the I54M, I84V, L90M, and L99F mutations resulted in multi-PI-resistant viruses, conferring 10-fold to more than 100-fold resistance. Of note, we observed a 62A/99F mutational motif that conferred high-level resistance to PIs, as well as novel secondary mutations, including 6F, 12A, and 21K. Thus, natural polymorphisms in HIV-2 may facilitate the selection of PI resistance. The increasing incidence of such polymorphisms in drug-naive HIV-1- and HIV-2-infected persons is of concern.
Antiviral activity against HIV2 isolate CBL20, CBL23, MVP15132 with V62A and L99F mutation in CBMCs
|
Human immunodeficiency virus 2
|
524.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Natural polymorphisms in the human immunodeficiency virus type 2 protease can accelerate time to development of resistance to protease inhibitors.
Year : 2007
Volume : 51
Issue : 2
First Page : 604
Last Page : 610
Authors : Ntemgwa M, Brenner BG, Oliveira M, Moisi D, Wainberg MA.
Abstract : Human immunodeficiency virus type 2 (HIV-2) contains numerous natural polymorphisms in its protease (PR) gene that are implicated in drug resistance in the case of HIV-1. This study evaluated emergent PR resistance in HIV-2. Three HIV-2 isolates were selected for resistance to amprenavir (APV), nelfinavir (NFV), indinavir (IDV), and tipranavir (TPV) in cell culture. Genotypic analysis determined the time to the appearance of protease inhibitor (PI)-associated mutations compared to HIV-1. Phenotypic drug susceptibility assays were used to determine the levels of drug resistance. Within 10 to 15 weeks of serial passage, three major mutations--I54M, I82F, and L90M--arose in HIV-2 viral cultures exposed to APV, NFV, and IDV, whereas I82L was selected with TPV. After 25 weeks, other cultures had developed I50V and I84V mutations. In contrast, no major PI mutations were selected in HIV-1 over this period except for D30N in the context of NFV selective pressure. The baseline phenotypes of wild-type HIV-2 isolates were in the range observed for HIV-1, except for APV and NFV for which a lower degree of sensitivity was seen. The acquisition of the I54M, I84V, L90M, and L99F mutations resulted in multi-PI-resistant viruses, conferring 10-fold to more than 100-fold resistance. Of note, we observed a 62A/99F mutational motif that conferred high-level resistance to PIs, as well as novel secondary mutations, including 6F, 12A, and 21K. Thus, natural polymorphisms in HIV-2 may facilitate the selection of PI resistance. The increasing incidence of such polymorphisms in drug-naive HIV-1- and HIV-2-infected persons is of concern.
Antiviral activity against HIV2 isolate CBL20, CBL23, MVP15132 with 150V mutation in CBMCs
|
Human immunodeficiency virus 2
|
316.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Natural polymorphisms in the human immunodeficiency virus type 2 protease can accelerate time to development of resistance to protease inhibitors.
Year : 2007
Volume : 51
Issue : 2
First Page : 604
Last Page : 610
Authors : Ntemgwa M, Brenner BG, Oliveira M, Moisi D, Wainberg MA.
Abstract : Human immunodeficiency virus type 2 (HIV-2) contains numerous natural polymorphisms in its protease (PR) gene that are implicated in drug resistance in the case of HIV-1. This study evaluated emergent PR resistance in HIV-2. Three HIV-2 isolates were selected for resistance to amprenavir (APV), nelfinavir (NFV), indinavir (IDV), and tipranavir (TPV) in cell culture. Genotypic analysis determined the time to the appearance of protease inhibitor (PI)-associated mutations compared to HIV-1. Phenotypic drug susceptibility assays were used to determine the levels of drug resistance. Within 10 to 15 weeks of serial passage, three major mutations--I54M, I82F, and L90M--arose in HIV-2 viral cultures exposed to APV, NFV, and IDV, whereas I82L was selected with TPV. After 25 weeks, other cultures had developed I50V and I84V mutations. In contrast, no major PI mutations were selected in HIV-1 over this period except for D30N in the context of NFV selective pressure. The baseline phenotypes of wild-type HIV-2 isolates were in the range observed for HIV-1, except for APV and NFV for which a lower degree of sensitivity was seen. The acquisition of the I54M, I84V, L90M, and L99F mutations resulted in multi-PI-resistant viruses, conferring 10-fold to more than 100-fold resistance. Of note, we observed a 62A/99F mutational motif that conferred high-level resistance to PIs, as well as novel secondary mutations, including 6F, 12A, and 21K. Thus, natural polymorphisms in HIV-2 may facilitate the selection of PI resistance. The increasing incidence of such polymorphisms in drug-naive HIV-1- and HIV-2-infected persons is of concern.
Antiviral activity against HIV2 isolate CBL20, CBL23, MVP15132 with 154M and L90M mutation in CBMCs
|
Human immunodeficiency virus 2
|
145.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Natural polymorphisms in the human immunodeficiency virus type 2 protease can accelerate time to development of resistance to protease inhibitors.
Year : 2007
Volume : 51
Issue : 2
First Page : 604
Last Page : 610
Authors : Ntemgwa M, Brenner BG, Oliveira M, Moisi D, Wainberg MA.
Abstract : Human immunodeficiency virus type 2 (HIV-2) contains numerous natural polymorphisms in its protease (PR) gene that are implicated in drug resistance in the case of HIV-1. This study evaluated emergent PR resistance in HIV-2. Three HIV-2 isolates were selected for resistance to amprenavir (APV), nelfinavir (NFV), indinavir (IDV), and tipranavir (TPV) in cell culture. Genotypic analysis determined the time to the appearance of protease inhibitor (PI)-associated mutations compared to HIV-1. Phenotypic drug susceptibility assays were used to determine the levels of drug resistance. Within 10 to 15 weeks of serial passage, three major mutations--I54M, I82F, and L90M--arose in HIV-2 viral cultures exposed to APV, NFV, and IDV, whereas I82L was selected with TPV. After 25 weeks, other cultures had developed I50V and I84V mutations. In contrast, no major PI mutations were selected in HIV-1 over this period except for D30N in the context of NFV selective pressure. The baseline phenotypes of wild-type HIV-2 isolates were in the range observed for HIV-1, except for APV and NFV for which a lower degree of sensitivity was seen. The acquisition of the I54M, I84V, L90M, and L99F mutations resulted in multi-PI-resistant viruses, conferring 10-fold to more than 100-fold resistance. Of note, we observed a 62A/99F mutational motif that conferred high-level resistance to PIs, as well as novel secondary mutations, including 6F, 12A, and 21K. Thus, natural polymorphisms in HIV-2 may facilitate the selection of PI resistance. The increasing incidence of such polymorphisms in drug-naive HIV-1- and HIV-2-infected persons is of concern.
Antiviral activity against wild type HIV1 in CBMCs
|
Human immunodeficiency virus 1
|
92.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Natural polymorphisms in the human immunodeficiency virus type 2 protease can accelerate time to development of resistance to protease inhibitors.
Year : 2007
Volume : 51
Issue : 2
First Page : 604
Last Page : 610
Authors : Ntemgwa M, Brenner BG, Oliveira M, Moisi D, Wainberg MA.
Abstract : Human immunodeficiency virus type 2 (HIV-2) contains numerous natural polymorphisms in its protease (PR) gene that are implicated in drug resistance in the case of HIV-1. This study evaluated emergent PR resistance in HIV-2. Three HIV-2 isolates were selected for resistance to amprenavir (APV), nelfinavir (NFV), indinavir (IDV), and tipranavir (TPV) in cell culture. Genotypic analysis determined the time to the appearance of protease inhibitor (PI)-associated mutations compared to HIV-1. Phenotypic drug susceptibility assays were used to determine the levels of drug resistance. Within 10 to 15 weeks of serial passage, three major mutations--I54M, I82F, and L90M--arose in HIV-2 viral cultures exposed to APV, NFV, and IDV, whereas I82L was selected with TPV. After 25 weeks, other cultures had developed I50V and I84V mutations. In contrast, no major PI mutations were selected in HIV-1 over this period except for D30N in the context of NFV selective pressure. The baseline phenotypes of wild-type HIV-2 isolates were in the range observed for HIV-1, except for APV and NFV for which a lower degree of sensitivity was seen. The acquisition of the I54M, I84V, L90M, and L99F mutations resulted in multi-PI-resistant viruses, conferring 10-fold to more than 100-fold resistance. Of note, we observed a 62A/99F mutational motif that conferred high-level resistance to PIs, as well as novel secondary mutations, including 6F, 12A, and 21K. Thus, natural polymorphisms in HIV-2 may facilitate the selection of PI resistance. The increasing incidence of such polymorphisms in drug-naive HIV-1- and HIV-2-infected persons is of concern.
Antiviral activity against HIV1 isolate 5512 with V321 and M46L mutation in CBMCs
|
Human immunodeficiency virus 1
|
42.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Natural polymorphisms in the human immunodeficiency virus type 2 protease can accelerate time to development of resistance to protease inhibitors.
Year : 2007
Volume : 51
Issue : 2
First Page : 604
Last Page : 610
Authors : Ntemgwa M, Brenner BG, Oliveira M, Moisi D, Wainberg MA.
Abstract : Human immunodeficiency virus type 2 (HIV-2) contains numerous natural polymorphisms in its protease (PR) gene that are implicated in drug resistance in the case of HIV-1. This study evaluated emergent PR resistance in HIV-2. Three HIV-2 isolates were selected for resistance to amprenavir (APV), nelfinavir (NFV), indinavir (IDV), and tipranavir (TPV) in cell culture. Genotypic analysis determined the time to the appearance of protease inhibitor (PI)-associated mutations compared to HIV-1. Phenotypic drug susceptibility assays were used to determine the levels of drug resistance. Within 10 to 15 weeks of serial passage, three major mutations--I54M, I82F, and L90M--arose in HIV-2 viral cultures exposed to APV, NFV, and IDV, whereas I82L was selected with TPV. After 25 weeks, other cultures had developed I50V and I84V mutations. In contrast, no major PI mutations were selected in HIV-1 over this period except for D30N in the context of NFV selective pressure. The baseline phenotypes of wild-type HIV-2 isolates were in the range observed for HIV-1, except for APV and NFV for which a lower degree of sensitivity was seen. The acquisition of the I54M, I84V, L90M, and L99F mutations resulted in multi-PI-resistant viruses, conferring 10-fold to more than 100-fold resistance. Of note, we observed a 62A/99F mutational motif that conferred high-level resistance to PIs, as well as novel secondary mutations, including 6F, 12A, and 21K. Thus, natural polymorphisms in HIV-2 may facilitate the selection of PI resistance. The increasing incidence of such polymorphisms in drug-naive HIV-1- and HIV-2-infected persons is of concern.
Antiviral activity against HIV1 isolate 5512 with D30N, M461 and V771 mutation in CBMCs
|
Human immunodeficiency virus 1
|
1.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Natural polymorphisms in the human immunodeficiency virus type 2 protease can accelerate time to development of resistance to protease inhibitors.
Year : 2007
Volume : 51
Issue : 2
First Page : 604
Last Page : 610
Authors : Ntemgwa M, Brenner BG, Oliveira M, Moisi D, Wainberg MA.
Abstract : Human immunodeficiency virus type 2 (HIV-2) contains numerous natural polymorphisms in its protease (PR) gene that are implicated in drug resistance in the case of HIV-1. This study evaluated emergent PR resistance in HIV-2. Three HIV-2 isolates were selected for resistance to amprenavir (APV), nelfinavir (NFV), indinavir (IDV), and tipranavir (TPV) in cell culture. Genotypic analysis determined the time to the appearance of protease inhibitor (PI)-associated mutations compared to HIV-1. Phenotypic drug susceptibility assays were used to determine the levels of drug resistance. Within 10 to 15 weeks of serial passage, three major mutations--I54M, I82F, and L90M--arose in HIV-2 viral cultures exposed to APV, NFV, and IDV, whereas I82L was selected with TPV. After 25 weeks, other cultures had developed I50V and I84V mutations. In contrast, no major PI mutations were selected in HIV-1 over this period except for D30N in the context of NFV selective pressure. The baseline phenotypes of wild-type HIV-2 isolates were in the range observed for HIV-1, except for APV and NFV for which a lower degree of sensitivity was seen. The acquisition of the I54M, I84V, L90M, and L99F mutations resulted in multi-PI-resistant viruses, conferring 10-fold to more than 100-fold resistance. Of note, we observed a 62A/99F mutational motif that conferred high-level resistance to PIs, as well as novel secondary mutations, including 6F, 12A, and 21K. Thus, natural polymorphisms in HIV-2 may facilitate the selection of PI resistance. The increasing incidence of such polymorphisms in drug-naive HIV-1- and HIV-2-infected persons is of concern.
Antiviral activity against HIV1 isolate 5512 with M36I/M and V82T mutation in CBMCs
|
Human immunodeficiency virus 1
|
192.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Natural polymorphisms in the human immunodeficiency virus type 2 protease can accelerate time to development of resistance to protease inhibitors.
Year : 2007
Volume : 51
Issue : 2
First Page : 604
Last Page : 610
Authors : Ntemgwa M, Brenner BG, Oliveira M, Moisi D, Wainberg MA.
Abstract : Human immunodeficiency virus type 2 (HIV-2) contains numerous natural polymorphisms in its protease (PR) gene that are implicated in drug resistance in the case of HIV-1. This study evaluated emergent PR resistance in HIV-2. Three HIV-2 isolates were selected for resistance to amprenavir (APV), nelfinavir (NFV), indinavir (IDV), and tipranavir (TPV) in cell culture. Genotypic analysis determined the time to the appearance of protease inhibitor (PI)-associated mutations compared to HIV-1. Phenotypic drug susceptibility assays were used to determine the levels of drug resistance. Within 10 to 15 weeks of serial passage, three major mutations--I54M, I82F, and L90M--arose in HIV-2 viral cultures exposed to APV, NFV, and IDV, whereas I82L was selected with TPV. After 25 weeks, other cultures had developed I50V and I84V mutations. In contrast, no major PI mutations were selected in HIV-1 over this period except for D30N in the context of NFV selective pressure. The baseline phenotypes of wild-type HIV-2 isolates were in the range observed for HIV-1, except for APV and NFV for which a lower degree of sensitivity was seen. The acquisition of the I54M, I84V, L90M, and L99F mutations resulted in multi-PI-resistant viruses, conferring 10-fold to more than 100-fold resistance. Of note, we observed a 62A/99F mutational motif that conferred high-level resistance to PIs, as well as novel secondary mutations, including 6F, 12A, and 21K. Thus, natural polymorphisms in HIV-2 may facilitate the selection of PI resistance. The increasing incidence of such polymorphisms in drug-naive HIV-1- and HIV-2-infected persons is of concern.
Inhibition of HIV1 protease
|
Human immunodeficiency virus 1
|
0.008
nM
|
|
Journal : J. Med. Chem.
Title : A combined QM/MM approach to protein--ligand interactions: polarization effects of the HIV-1 protease on selected high affinity inhibitors.
Year : 2004
Volume : 47
Issue : 27
First Page : 6673
Last Page : 6680
Authors : Hensen C, Hermann JC, Nam K, Ma S, Gao J, Höltje HD.
Abstract : HIV-1 protease inhibitors are one of the two widely used therapeutic agents for the treatment of HIV-infected patients. The investigation of HIV-1 protease-inhibitor interactions can provide further insight for developing new compounds that are still required due to the growing problem of drug resistance. To this end, a combined QM/MM approach was used to determine electrostatic and polarization interactions on three high affinity inhibitors, nelfinavir, mozenavir, and tipranavir. The present computational results show that explicit treatment of the polarization effect is particularly important since it can contribute as much as one-third of the total electrostatic interaction energy. Further, an amino acid decomposition analysis was applied to determine contributions of individual residues to the enzyme--inhibitor interactions. It was found that the 4-hydroxy-dihydropyrone substructure of tipranavir is especially suited for extended charge delocalization by interacting with the catalytic aspartates and isoleucines of the HIV-1 protease. The calculated electron density difference maps reaffirm and provide a means of visualizing these results.
Antiviral activity against HIV1 LAI in MT2 cells
|
Human immunodeficiency virus 1
|
100.0
nM
|
|
Journal : J. Biol. Chem.
Title : Potent inhibition of HIV-1 replication by novel non-peptidyl small molecule inhibitors of protease dimerization.
Year : 2007
Volume : 282
Issue : 39
First Page : 28709
Last Page : 28720
Authors : Koh Y, Matsumi S, Das D, Amano M, Davis DA, Li J, Leschenko S, Baldridge A, Shioda T, Yarchoan R, Ghosh AK, Mitsuya H.
Abstract : Dimerization of HIV-1 protease subunits is essential for its proteolytic activity, which plays a critical role in HIV-1 replication. Hence, the inhibition of protease dimerization represents a unique target for potential intervention of HIV-1. We developed an intermolecular fluorescence resonance energy transfer-based HIV-1-expression assay employing cyan and yellow fluorescent protein-tagged protease monomers. Using this assay, we identified non-peptidyl small molecule inhibitors of protease dimerization. These inhibitors, including darunavir and two experimental protease inhibitors, blocked protease dimerization at concentrations of as low as 0.01 microm and blocked HIV-1 replication with IC(50) values of 0.0002-0.48 microm. These agents also inhibited the proteolytic activity of mature protease. Other approved anti-HIV-1 agents examined except tipranavir, a CCR5 inhibitor, and soluble CD4 failed to block the dimerization event. Once protease monomers dimerize to become mature protease, mature protease is not dissociated by this dimerization inhibition mechanism, suggesting that these agents block dimerization at the nascent stage of protease maturation. The proteolytic activity of mature protease that managed to undergo dimerization despite the presence of these agents is likely to be inhibited by the same agents acting as conventional protease inhibitors. Such a dual inhibition mechanism should lead to highly potent inhibition of HIV-1.
Antiviral activity against HIV1 BaL in human PBMC assessed as blockade of reverse transcriptase activity
|
Human immunodeficiency virus 1
|
304.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro antiviral activity of the novel, tyrosyl-based human immunodeficiency virus (HIV) type 1 protease inhibitor brecanavir (GW640385) in combination with other antiretrovirals and against a panel of protease inhibitor-resistant HIV.
Year : 2007
Volume : 51
Issue : 9
First Page : 3147
Last Page : 3154
Authors : Hazen R, Harvey R, Ferris R, Craig C, Yates P, Griffin P, Miller J, Kaldor I, Ray J, Samano V, Furfine E, Spaltenstein A, Hale M, Tung R, St Clair M, Hanlon M, Boone L.
Abstract : Brecanavir, a novel tyrosyl-based arylsulfonamide, high-affinity, human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), has been evaluated for anti-HIV activity in several in vitro assays. Preclinical assessment of brecanavir indicated that this compound potently inhibited HIV-1 in cell culture assays with 50% effective concentrations (EC(50)s) of 0.2 to 0.53 nM and was equally active against HIV strains utilizing either the CXCR4 or CCR5 coreceptor, as was found with other PIs. The presence of up to 40% human serum decreased the anti-HIV-1 activity of brecanavir by 5.2-fold, but under these conditions the compound retained single-digit nanomolar EC(50)s. When brecanavir was tested in combination with nucleoside reverse transcriptase inhibitors, the antiviral activity of brecanavir was synergistic with the effects of stavudine and additive to the effects of zidovudine, tenofovir, dideoxycytidine, didanosine, adefovir, abacavir, lamivudine, and emtricitabine. Brecanavir was synergistic with the nonnucleoside reverse transcriptase inhibitor nevirapine or delavirdine and was additive to the effects of efavirenz. In combination with other PIs, brecanavir was additive to the activities of indinavir, lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir. Clinical HIV isolates from PI-experienced patients were evaluated for sensitivity to brecanavir and other PIs in a recombinant virus assay. Brecanavir had a <5-fold increase in EC(50)s against 80% of patient isolates tested and had a greater mean in vitro potency than amprenavir, indinavir, lopinavir, atazanavir, tipranavir, and darunavir. Brecanavir is by a substantial margin the most potent and broadly active antiviral agent among the PIs tested in vitro.
Antiviral activity against HIV1 HXB2 in human MT4 cells assessed as inhibition of viral-induced viral cytopathic effect in presence of 10% fetal bovine serum by MTS assay
|
Human immunodeficiency virus 1
|
40.9
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro antiviral activity of the novel, tyrosyl-based human immunodeficiency virus (HIV) type 1 protease inhibitor brecanavir (GW640385) in combination with other antiretrovirals and against a panel of protease inhibitor-resistant HIV.
Year : 2007
Volume : 51
Issue : 9
First Page : 3147
Last Page : 3154
Authors : Hazen R, Harvey R, Ferris R, Craig C, Yates P, Griffin P, Miller J, Kaldor I, Ray J, Samano V, Furfine E, Spaltenstein A, Hale M, Tung R, St Clair M, Hanlon M, Boone L.
Abstract : Brecanavir, a novel tyrosyl-based arylsulfonamide, high-affinity, human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), has been evaluated for anti-HIV activity in several in vitro assays. Preclinical assessment of brecanavir indicated that this compound potently inhibited HIV-1 in cell culture assays with 50% effective concentrations (EC(50)s) of 0.2 to 0.53 nM and was equally active against HIV strains utilizing either the CXCR4 or CCR5 coreceptor, as was found with other PIs. The presence of up to 40% human serum decreased the anti-HIV-1 activity of brecanavir by 5.2-fold, but under these conditions the compound retained single-digit nanomolar EC(50)s. When brecanavir was tested in combination with nucleoside reverse transcriptase inhibitors, the antiviral activity of brecanavir was synergistic with the effects of stavudine and additive to the effects of zidovudine, tenofovir, dideoxycytidine, didanosine, adefovir, abacavir, lamivudine, and emtricitabine. Brecanavir was synergistic with the nonnucleoside reverse transcriptase inhibitor nevirapine or delavirdine and was additive to the effects of efavirenz. In combination with other PIs, brecanavir was additive to the activities of indinavir, lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir. Clinical HIV isolates from PI-experienced patients were evaluated for sensitivity to brecanavir and other PIs in a recombinant virus assay. Brecanavir had a <5-fold increase in EC(50)s against 80% of patient isolates tested and had a greater mean in vitro potency than amprenavir, indinavir, lopinavir, atazanavir, tipranavir, and darunavir. Brecanavir is by a substantial margin the most potent and broadly active antiviral agent among the PIs tested in vitro.
Antiviral activity against HIV1 HXB2 in human MT4 cells assessed as inhibition of viral-induced viral cytopathic effect in presence of 10% fetal bovine serum and 10% human serum by MTS assay
|
Human immunodeficiency virus 1
|
310.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro antiviral activity of the novel, tyrosyl-based human immunodeficiency virus (HIV) type 1 protease inhibitor brecanavir (GW640385) in combination with other antiretrovirals and against a panel of protease inhibitor-resistant HIV.
Year : 2007
Volume : 51
Issue : 9
First Page : 3147
Last Page : 3154
Authors : Hazen R, Harvey R, Ferris R, Craig C, Yates P, Griffin P, Miller J, Kaldor I, Ray J, Samano V, Furfine E, Spaltenstein A, Hale M, Tung R, St Clair M, Hanlon M, Boone L.
Abstract : Brecanavir, a novel tyrosyl-based arylsulfonamide, high-affinity, human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), has been evaluated for anti-HIV activity in several in vitro assays. Preclinical assessment of brecanavir indicated that this compound potently inhibited HIV-1 in cell culture assays with 50% effective concentrations (EC(50)s) of 0.2 to 0.53 nM and was equally active against HIV strains utilizing either the CXCR4 or CCR5 coreceptor, as was found with other PIs. The presence of up to 40% human serum decreased the anti-HIV-1 activity of brecanavir by 5.2-fold, but under these conditions the compound retained single-digit nanomolar EC(50)s. When brecanavir was tested in combination with nucleoside reverse transcriptase inhibitors, the antiviral activity of brecanavir was synergistic with the effects of stavudine and additive to the effects of zidovudine, tenofovir, dideoxycytidine, didanosine, adefovir, abacavir, lamivudine, and emtricitabine. Brecanavir was synergistic with the nonnucleoside reverse transcriptase inhibitor nevirapine or delavirdine and was additive to the effects of efavirenz. In combination with other PIs, brecanavir was additive to the activities of indinavir, lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir. Clinical HIV isolates from PI-experienced patients were evaluated for sensitivity to brecanavir and other PIs in a recombinant virus assay. Brecanavir had a <5-fold increase in EC(50)s against 80% of patient isolates tested and had a greater mean in vitro potency than amprenavir, indinavir, lopinavir, atazanavir, tipranavir, and darunavir. Brecanavir is by a substantial margin the most potent and broadly active antiviral agent among the PIs tested in vitro.
Antiviral activity against HIV1 HXB2 in human MT4 cells assessed as inhibition of viral-induced viral cytopathic effect in presence of 10% fetal bovine serum and 20% human serum by MTS assay
|
Human immunodeficiency virus 1
|
507.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro antiviral activity of the novel, tyrosyl-based human immunodeficiency virus (HIV) type 1 protease inhibitor brecanavir (GW640385) in combination with other antiretrovirals and against a panel of protease inhibitor-resistant HIV.
Year : 2007
Volume : 51
Issue : 9
First Page : 3147
Last Page : 3154
Authors : Hazen R, Harvey R, Ferris R, Craig C, Yates P, Griffin P, Miller J, Kaldor I, Ray J, Samano V, Furfine E, Spaltenstein A, Hale M, Tung R, St Clair M, Hanlon M, Boone L.
Abstract : Brecanavir, a novel tyrosyl-based arylsulfonamide, high-affinity, human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), has been evaluated for anti-HIV activity in several in vitro assays. Preclinical assessment of brecanavir indicated that this compound potently inhibited HIV-1 in cell culture assays with 50% effective concentrations (EC(50)s) of 0.2 to 0.53 nM and was equally active against HIV strains utilizing either the CXCR4 or CCR5 coreceptor, as was found with other PIs. The presence of up to 40% human serum decreased the anti-HIV-1 activity of brecanavir by 5.2-fold, but under these conditions the compound retained single-digit nanomolar EC(50)s. When brecanavir was tested in combination with nucleoside reverse transcriptase inhibitors, the antiviral activity of brecanavir was synergistic with the effects of stavudine and additive to the effects of zidovudine, tenofovir, dideoxycytidine, didanosine, adefovir, abacavir, lamivudine, and emtricitabine. Brecanavir was synergistic with the nonnucleoside reverse transcriptase inhibitor nevirapine or delavirdine and was additive to the effects of efavirenz. In combination with other PIs, brecanavir was additive to the activities of indinavir, lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir. Clinical HIV isolates from PI-experienced patients were evaluated for sensitivity to brecanavir and other PIs in a recombinant virus assay. Brecanavir had a <5-fold increase in EC(50)s against 80% of patient isolates tested and had a greater mean in vitro potency than amprenavir, indinavir, lopinavir, atazanavir, tipranavir, and darunavir. Brecanavir is by a substantial margin the most potent and broadly active antiviral agent among the PIs tested in vitro.
Antiviral activity against HIV1 HXB2 in human MT4 cells assessed as inhibition of viral-induced viral cytopathic effect in presence of 10% fetal bovine serum and 30% human serum by MTS assay
|
Human immunodeficiency virus 1
|
580.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro antiviral activity of the novel, tyrosyl-based human immunodeficiency virus (HIV) type 1 protease inhibitor brecanavir (GW640385) in combination with other antiretrovirals and against a panel of protease inhibitor-resistant HIV.
Year : 2007
Volume : 51
Issue : 9
First Page : 3147
Last Page : 3154
Authors : Hazen R, Harvey R, Ferris R, Craig C, Yates P, Griffin P, Miller J, Kaldor I, Ray J, Samano V, Furfine E, Spaltenstein A, Hale M, Tung R, St Clair M, Hanlon M, Boone L.
Abstract : Brecanavir, a novel tyrosyl-based arylsulfonamide, high-affinity, human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), has been evaluated for anti-HIV activity in several in vitro assays. Preclinical assessment of brecanavir indicated that this compound potently inhibited HIV-1 in cell culture assays with 50% effective concentrations (EC(50)s) of 0.2 to 0.53 nM and was equally active against HIV strains utilizing either the CXCR4 or CCR5 coreceptor, as was found with other PIs. The presence of up to 40% human serum decreased the anti-HIV-1 activity of brecanavir by 5.2-fold, but under these conditions the compound retained single-digit nanomolar EC(50)s. When brecanavir was tested in combination with nucleoside reverse transcriptase inhibitors, the antiviral activity of brecanavir was synergistic with the effects of stavudine and additive to the effects of zidovudine, tenofovir, dideoxycytidine, didanosine, adefovir, abacavir, lamivudine, and emtricitabine. Brecanavir was synergistic with the nonnucleoside reverse transcriptase inhibitor nevirapine or delavirdine and was additive to the effects of efavirenz. In combination with other PIs, brecanavir was additive to the activities of indinavir, lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir. Clinical HIV isolates from PI-experienced patients were evaluated for sensitivity to brecanavir and other PIs in a recombinant virus assay. Brecanavir had a <5-fold increase in EC(50)s against 80% of patient isolates tested and had a greater mean in vitro potency than amprenavir, indinavir, lopinavir, atazanavir, tipranavir, and darunavir. Brecanavir is by a substantial margin the most potent and broadly active antiviral agent among the PIs tested in vitro.
Antiviral activity against HIV1 HXB2 in human MT4 cells assessed as inhibition of viral-induced viral cytopathic effect in presence of 10% fetal bovine serum and 40% human serum by MTS assay
|
Human immunodeficiency virus 1
|
660.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro antiviral activity of the novel, tyrosyl-based human immunodeficiency virus (HIV) type 1 protease inhibitor brecanavir (GW640385) in combination with other antiretrovirals and against a panel of protease inhibitor-resistant HIV.
Year : 2007
Volume : 51
Issue : 9
First Page : 3147
Last Page : 3154
Authors : Hazen R, Harvey R, Ferris R, Craig C, Yates P, Griffin P, Miller J, Kaldor I, Ray J, Samano V, Furfine E, Spaltenstein A, Hale M, Tung R, St Clair M, Hanlon M, Boone L.
Abstract : Brecanavir, a novel tyrosyl-based arylsulfonamide, high-affinity, human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), has been evaluated for anti-HIV activity in several in vitro assays. Preclinical assessment of brecanavir indicated that this compound potently inhibited HIV-1 in cell culture assays with 50% effective concentrations (EC(50)s) of 0.2 to 0.53 nM and was equally active against HIV strains utilizing either the CXCR4 or CCR5 coreceptor, as was found with other PIs. The presence of up to 40% human serum decreased the anti-HIV-1 activity of brecanavir by 5.2-fold, but under these conditions the compound retained single-digit nanomolar EC(50)s. When brecanavir was tested in combination with nucleoside reverse transcriptase inhibitors, the antiviral activity of brecanavir was synergistic with the effects of stavudine and additive to the effects of zidovudine, tenofovir, dideoxycytidine, didanosine, adefovir, abacavir, lamivudine, and emtricitabine. Brecanavir was synergistic with the nonnucleoside reverse transcriptase inhibitor nevirapine or delavirdine and was additive to the effects of efavirenz. In combination with other PIs, brecanavir was additive to the activities of indinavir, lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir. Clinical HIV isolates from PI-experienced patients were evaluated for sensitivity to brecanavir and other PIs in a recombinant virus assay. Brecanavir had a <5-fold increase in EC(50)s against 80% of patient isolates tested and had a greater mean in vitro potency than amprenavir, indinavir, lopinavir, atazanavir, tipranavir, and darunavir. Brecanavir is by a substantial margin the most potent and broadly active antiviral agent among the PIs tested in vitro.
Antiviral activity against HIV1 drug resistant mutant isolates from protease inhibitor treated HIV patient
|
Human immunodeficiency virus 1
|
190.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro antiviral activity of the novel, tyrosyl-based human immunodeficiency virus (HIV) type 1 protease inhibitor brecanavir (GW640385) in combination with other antiretrovirals and against a panel of protease inhibitor-resistant HIV.
Year : 2007
Volume : 51
Issue : 9
First Page : 3147
Last Page : 3154
Authors : Hazen R, Harvey R, Ferris R, Craig C, Yates P, Griffin P, Miller J, Kaldor I, Ray J, Samano V, Furfine E, Spaltenstein A, Hale M, Tung R, St Clair M, Hanlon M, Boone L.
Abstract : Brecanavir, a novel tyrosyl-based arylsulfonamide, high-affinity, human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), has been evaluated for anti-HIV activity in several in vitro assays. Preclinical assessment of brecanavir indicated that this compound potently inhibited HIV-1 in cell culture assays with 50% effective concentrations (EC(50)s) of 0.2 to 0.53 nM and was equally active against HIV strains utilizing either the CXCR4 or CCR5 coreceptor, as was found with other PIs. The presence of up to 40% human serum decreased the anti-HIV-1 activity of brecanavir by 5.2-fold, but under these conditions the compound retained single-digit nanomolar EC(50)s. When brecanavir was tested in combination with nucleoside reverse transcriptase inhibitors, the antiviral activity of brecanavir was synergistic with the effects of stavudine and additive to the effects of zidovudine, tenofovir, dideoxycytidine, didanosine, adefovir, abacavir, lamivudine, and emtricitabine. Brecanavir was synergistic with the nonnucleoside reverse transcriptase inhibitor nevirapine or delavirdine and was additive to the effects of efavirenz. In combination with other PIs, brecanavir was additive to the activities of indinavir, lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir. Clinical HIV isolates from PI-experienced patients were evaluated for sensitivity to brecanavir and other PIs in a recombinant virus assay. Brecanavir had a <5-fold increase in EC(50)s against 80% of patient isolates tested and had a greater mean in vitro potency than amprenavir, indinavir, lopinavir, atazanavir, tipranavir, and darunavir. Brecanavir is by a substantial margin the most potent and broadly active antiviral agent among the PIs tested in vitro.
Antiviral activity against HIV1 NL4-3
|
Human immunodeficiency virus 1
|
76.2
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro antiviral activity of the novel, tyrosyl-based human immunodeficiency virus (HIV) type 1 protease inhibitor brecanavir (GW640385) in combination with other antiretrovirals and against a panel of protease inhibitor-resistant HIV.
Year : 2007
Volume : 51
Issue : 9
First Page : 3147
Last Page : 3154
Authors : Hazen R, Harvey R, Ferris R, Craig C, Yates P, Griffin P, Miller J, Kaldor I, Ray J, Samano V, Furfine E, Spaltenstein A, Hale M, Tung R, St Clair M, Hanlon M, Boone L.
Abstract : Brecanavir, a novel tyrosyl-based arylsulfonamide, high-affinity, human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), has been evaluated for anti-HIV activity in several in vitro assays. Preclinical assessment of brecanavir indicated that this compound potently inhibited HIV-1 in cell culture assays with 50% effective concentrations (EC(50)s) of 0.2 to 0.53 nM and was equally active against HIV strains utilizing either the CXCR4 or CCR5 coreceptor, as was found with other PIs. The presence of up to 40% human serum decreased the anti-HIV-1 activity of brecanavir by 5.2-fold, but under these conditions the compound retained single-digit nanomolar EC(50)s. When brecanavir was tested in combination with nucleoside reverse transcriptase inhibitors, the antiviral activity of brecanavir was synergistic with the effects of stavudine and additive to the effects of zidovudine, tenofovir, dideoxycytidine, didanosine, adefovir, abacavir, lamivudine, and emtricitabine. Brecanavir was synergistic with the nonnucleoside reverse transcriptase inhibitor nevirapine or delavirdine and was additive to the effects of efavirenz. In combination with other PIs, brecanavir was additive to the activities of indinavir, lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir. Clinical HIV isolates from PI-experienced patients were evaluated for sensitivity to brecanavir and other PIs in a recombinant virus assay. Brecanavir had a <5-fold increase in EC(50)s against 80% of patient isolates tested and had a greater mean in vitro potency than amprenavir, indinavir, lopinavir, atazanavir, tipranavir, and darunavir. Brecanavir is by a substantial margin the most potent and broadly active antiviral agent among the PIs tested in vitro.
Inhibition of HIV1 protease by fluorescent peptide substrate based assay
|
Human immunodeficiency virus 1
|
0.008
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro antiviral activity of the novel, tyrosyl-based human immunodeficiency virus (HIV) type 1 protease inhibitor brecanavir (GW640385) in combination with other antiretrovirals and against a panel of protease inhibitor-resistant HIV.
Year : 2007
Volume : 51
Issue : 9
First Page : 3147
Last Page : 3154
Authors : Hazen R, Harvey R, Ferris R, Craig C, Yates P, Griffin P, Miller J, Kaldor I, Ray J, Samano V, Furfine E, Spaltenstein A, Hale M, Tung R, St Clair M, Hanlon M, Boone L.
Abstract : Brecanavir, a novel tyrosyl-based arylsulfonamide, high-affinity, human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), has been evaluated for anti-HIV activity in several in vitro assays. Preclinical assessment of brecanavir indicated that this compound potently inhibited HIV-1 in cell culture assays with 50% effective concentrations (EC(50)s) of 0.2 to 0.53 nM and was equally active against HIV strains utilizing either the CXCR4 or CCR5 coreceptor, as was found with other PIs. The presence of up to 40% human serum decreased the anti-HIV-1 activity of brecanavir by 5.2-fold, but under these conditions the compound retained single-digit nanomolar EC(50)s. When brecanavir was tested in combination with nucleoside reverse transcriptase inhibitors, the antiviral activity of brecanavir was synergistic with the effects of stavudine and additive to the effects of zidovudine, tenofovir, dideoxycytidine, didanosine, adefovir, abacavir, lamivudine, and emtricitabine. Brecanavir was synergistic with the nonnucleoside reverse transcriptase inhibitor nevirapine or delavirdine and was additive to the effects of efavirenz. In combination with other PIs, brecanavir was additive to the activities of indinavir, lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir. Clinical HIV isolates from PI-experienced patients were evaluated for sensitivity to brecanavir and other PIs in a recombinant virus assay. Brecanavir had a <5-fold increase in EC(50)s against 80% of patient isolates tested and had a greater mean in vitro potency than amprenavir, indinavir, lopinavir, atazanavir, tipranavir, and darunavir. Brecanavir is by a substantial margin the most potent and broadly active antiviral agent among the PIs tested in vitro.
Antiviral activity against wild-type HIV1 pNL4-3 infected in human MT4 cells assessed as reduction in viral cytopathogenicity treated 1 hr post infection measured 5 days post infection in absence of human serum by MTT assay
|
Human immunodeficiency virus 1
|
184.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Characterization of a novel human immunodeficiency virus type 1 protease inhibitor, A-790742.
Year : 2008
Volume : 52
Issue : 4
First Page : 1337
Last Page : 1344
Authors : Dekhtyar T, Ng TI, Lu L, Masse S, DeGoey DA, Flosi WJ, Grampovnik DJ, Klein LL, Kempf DJ, Molla A.
Abstract : A-790742 is a potent human immunodeficiency virus type 1 (HIV-1) protease inhibitor, with 50% effective concentrations ranging from 2 to 7 nM against wild-type HIV-1. The activity of this compound is lowered by approximately sevenfold in the presence of 50% human serum. A-790742 maintained potent antiviral activity against lopinavir-resistant variants generated in vitro as well as against a panel of molecular clones containing proteases derived from HIV-1 patient isolates with multiple protease mutations. During in vitro selection, A-790742 selected two primary mutations (V82L and I84V) along with L23I, L33F, K45I, A71V/A, and V77I in the pNL4-3 background and two other mutations (A71V and V82G) accompanied by M46I and L63P in the HIV-1 RF background. HIV-1 pNL4-3 clones with a single V82L or I84V mutation were phenotypically resistant to A-790742 and ritonavir. Taking these results together, A-790742 displays a favorable anti-HIV-1 profile against both the wild type and a large number of mutants resistant to other protease inhibitors. The selection of the uncommon V82L and V82G mutations in protease by A-790742 suggests the potential for an advantageous resistance profile with this protease inhibitor.
Antiviral activity against wild-type HIV1 RF infected in human MT4 cells assessed as reduction in viral cytopathogenicity treated 1 hr post infection measured 5 days post infection in absence of human serum by MTT assay
|
Human immunodeficiency virus 1
|
204.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Characterization of a novel human immunodeficiency virus type 1 protease inhibitor, A-790742.
Year : 2008
Volume : 52
Issue : 4
First Page : 1337
Last Page : 1344
Authors : Dekhtyar T, Ng TI, Lu L, Masse S, DeGoey DA, Flosi WJ, Grampovnik DJ, Klein LL, Kempf DJ, Molla A.
Abstract : A-790742 is a potent human immunodeficiency virus type 1 (HIV-1) protease inhibitor, with 50% effective concentrations ranging from 2 to 7 nM against wild-type HIV-1. The activity of this compound is lowered by approximately sevenfold in the presence of 50% human serum. A-790742 maintained potent antiviral activity against lopinavir-resistant variants generated in vitro as well as against a panel of molecular clones containing proteases derived from HIV-1 patient isolates with multiple protease mutations. During in vitro selection, A-790742 selected two primary mutations (V82L and I84V) along with L23I, L33F, K45I, A71V/A, and V77I in the pNL4-3 background and two other mutations (A71V and V82G) accompanied by M46I and L63P in the HIV-1 RF background. HIV-1 pNL4-3 clones with a single V82L or I84V mutation were phenotypically resistant to A-790742 and ritonavir. Taking these results together, A-790742 displays a favorable anti-HIV-1 profile against both the wild type and a large number of mutants resistant to other protease inhibitors. The selection of the uncommon V82L and V82G mutations in protease by A-790742 suggests the potential for an advantageous resistance profile with this protease inhibitor.
Antiviral activity against wild-type HIV1 pNL4-3 infected in human MT4 cells assessed as reduction in viral cytopathogenicity after 5 days post dose by MTT assay
|
Human immunodeficiency virus 1
|
66.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Characterization of a novel human immunodeficiency virus type 1 protease inhibitor, A-790742.
Year : 2008
Volume : 52
Issue : 4
First Page : 1337
Last Page : 1344
Authors : Dekhtyar T, Ng TI, Lu L, Masse S, DeGoey DA, Flosi WJ, Grampovnik DJ, Klein LL, Kempf DJ, Molla A.
Abstract : A-790742 is a potent human immunodeficiency virus type 1 (HIV-1) protease inhibitor, with 50% effective concentrations ranging from 2 to 7 nM against wild-type HIV-1. The activity of this compound is lowered by approximately sevenfold in the presence of 50% human serum. A-790742 maintained potent antiviral activity against lopinavir-resistant variants generated in vitro as well as against a panel of molecular clones containing proteases derived from HIV-1 patient isolates with multiple protease mutations. During in vitro selection, A-790742 selected two primary mutations (V82L and I84V) along with L23I, L33F, K45I, A71V/A, and V77I in the pNL4-3 background and two other mutations (A71V and V82G) accompanied by M46I and L63P in the HIV-1 RF background. HIV-1 pNL4-3 clones with a single V82L or I84V mutation were phenotypically resistant to A-790742 and ritonavir. Taking these results together, A-790742 displays a favorable anti-HIV-1 profile against both the wild type and a large number of mutants resistant to other protease inhibitors. The selection of the uncommon V82L and V82G mutations in protease by A-790742 suggests the potential for an advantageous resistance profile with this protease inhibitor.
Antiviral activity against HIV1 A17 infected in human MT4 cells harboring protease L10F, V32I, M46I, I47V, Q58E, and I84V mutation derived from viral passages with Lopinavir assessed as reduction in viral cytopathogenicity treated 1 hr post infection measured 5 days post infection by MTT assay
|
Human immunodeficiency virus 1
|
360.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Characterization of a novel human immunodeficiency virus type 1 protease inhibitor, A-790742.
Year : 2008
Volume : 52
Issue : 4
First Page : 1337
Last Page : 1344
Authors : Dekhtyar T, Ng TI, Lu L, Masse S, DeGoey DA, Flosi WJ, Grampovnik DJ, Klein LL, Kempf DJ, Molla A.
Abstract : A-790742 is a potent human immunodeficiency virus type 1 (HIV-1) protease inhibitor, with 50% effective concentrations ranging from 2 to 7 nM against wild-type HIV-1. The activity of this compound is lowered by approximately sevenfold in the presence of 50% human serum. A-790742 maintained potent antiviral activity against lopinavir-resistant variants generated in vitro as well as against a panel of molecular clones containing proteases derived from HIV-1 patient isolates with multiple protease mutations. During in vitro selection, A-790742 selected two primary mutations (V82L and I84V) along with L23I, L33F, K45I, A71V/A, and V77I in the pNL4-3 background and two other mutations (A71V and V82G) accompanied by M46I and L63P in the HIV-1 RF background. HIV-1 pNL4-3 clones with a single V82L or I84V mutation were phenotypically resistant to A-790742 and ritonavir. Taking these results together, A-790742 displays a favorable anti-HIV-1 profile against both the wild type and a large number of mutants resistant to other protease inhibitors. The selection of the uncommon V82L and V82G mutations in protease by A-790742 suggests the potential for an advantageous resistance profile with this protease inhibitor.
Antiviral activity against HIV 2 subtype A clinical isolate expressing 14H-17D-43T-68N/D protease gene sequence from HIV2 infected patient plasma and PBMC obtained before compound treatment measured after 13 months
|
Human immunodeficiency virus 2
|
300.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors.
Year : 2008
Volume : 52
Issue : 4
First Page : 1545
Last Page : 1548
Authors : Desbois D, Roquebert B, Peytavin G, Damond F, Collin G, Bénard A, Campa P, Matheron S, Chêne G, Brun-Vézinet F, Descamps D, French ANRS HIV-2 Cohort (ANRS CO 05 VIH-2).
Abstract : We determine phenotypic susceptibility of human immunodeficiency virus type 2 (HIV-2) isolates to amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, saquinavir, and tipranavir. Saquinavir, lopinavir, and darunavir are potent against wild-type HIV-2 isolates and should be preferred as first-line options for HIV-2-infected patients. Other protease inhibitors are less active against HIV-2 than against HIV-1.
Antiviral activity against HIV 2 subtype A clinical isolate expressing 14H-60K/N-65E protease gene sequence from HIV2 infected patient plasma and PBMC obtained before compound treatment measured after 13 months
|
Human immunodeficiency virus 2
|
300.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors.
Year : 2008
Volume : 52
Issue : 4
First Page : 1545
Last Page : 1548
Authors : Desbois D, Roquebert B, Peytavin G, Damond F, Collin G, Bénard A, Campa P, Matheron S, Chêne G, Brun-Vézinet F, Descamps D, French ANRS HIV-2 Cohort (ANRS CO 05 VIH-2).
Abstract : We determine phenotypic susceptibility of human immunodeficiency virus type 2 (HIV-2) isolates to amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, saquinavir, and tipranavir. Saquinavir, lopinavir, and darunavir are potent against wild-type HIV-2 isolates and should be preferred as first-line options for HIV-2-infected patients. Other protease inhibitors are less active against HIV-2 than against HIV-1.
Antiviral activity against HIV 2 subtype A clinical isolate expressing 10I-17D-40D-43I-46V-66V/A-70R/K protease gene sequence from HIV2 infected patient plasma and PBMC obtained before compound treatment measured after 13 months
|
Human immunodeficiency virus 2
|
300.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors.
Year : 2008
Volume : 52
Issue : 4
First Page : 1545
Last Page : 1548
Authors : Desbois D, Roquebert B, Peytavin G, Damond F, Collin G, Bénard A, Campa P, Matheron S, Chêne G, Brun-Vézinet F, Descamps D, French ANRS HIV-2 Cohort (ANRS CO 05 VIH-2).
Abstract : We determine phenotypic susceptibility of human immunodeficiency virus type 2 (HIV-2) isolates to amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, saquinavir, and tipranavir. Saquinavir, lopinavir, and darunavir are potent against wild-type HIV-2 isolates and should be preferred as first-line options for HIV-2-infected patients. Other protease inhibitors are less active against HIV-2 than against HIV-1.
Antiviral activity against HIV 2 subtype A clinical isolate expressing 14H-40D-70K-72R/K-91T/S protease gene sequence from HIV2 infected patient plasma and PBMC obtained before compound treatment measured after 13 months
|
Human immunodeficiency virus 2
|
400.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors.
Year : 2008
Volume : 52
Issue : 4
First Page : 1545
Last Page : 1548
Authors : Desbois D, Roquebert B, Peytavin G, Damond F, Collin G, Bénard A, Campa P, Matheron S, Chêne G, Brun-Vézinet F, Descamps D, French ANRS HIV-2 Cohort (ANRS CO 05 VIH-2).
Abstract : We determine phenotypic susceptibility of human immunodeficiency virus type 2 (HIV-2) isolates to amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, saquinavir, and tipranavir. Saquinavir, lopinavir, and darunavir are potent against wild-type HIV-2 isolates and should be preferred as first-line options for HIV-2-infected patients. Other protease inhibitors are less active against HIV-2 than against HIV-1.
Antiviral activity against HIV 2 subtype B clinical isolate expressing 14Y-61N-99L protease gene sequence from HIV2 infected patient plasma and PBMC obtained before compound treatment measured after 13 months
|
Human immunodeficiency virus 2
|
400.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors.
Year : 2008
Volume : 52
Issue : 4
First Page : 1545
Last Page : 1548
Authors : Desbois D, Roquebert B, Peytavin G, Damond F, Collin G, Bénard A, Campa P, Matheron S, Chêne G, Brun-Vézinet F, Descamps D, French ANRS HIV-2 Cohort (ANRS CO 05 VIH-2).
Abstract : We determine phenotypic susceptibility of human immunodeficiency virus type 2 (HIV-2) isolates to amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, saquinavir, and tipranavir. Saquinavir, lopinavir, and darunavir are potent against wild-type HIV-2 isolates and should be preferred as first-line options for HIV-2-infected patients. Other protease inhibitors are less active against HIV-2 than against HIV-1.
Antiviral activity against HIV 2 subtype B clinical isolate expressing 12T-14Y-19P-40N-41D-61N-62I-96S-99L protease gene sequence from HIV2 infected patient plasma and PBMC obtained before compound treatment measured after 13 months
|
Human immunodeficiency virus 2
|
400.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors.
Year : 2008
Volume : 52
Issue : 4
First Page : 1545
Last Page : 1548
Authors : Desbois D, Roquebert B, Peytavin G, Damond F, Collin G, Bénard A, Campa P, Matheron S, Chêne G, Brun-Vézinet F, Descamps D, French ANRS HIV-2 Cohort (ANRS CO 05 VIH-2).
Abstract : We determine phenotypic susceptibility of human immunodeficiency virus type 2 (HIV-2) isolates to amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, saquinavir, and tipranavir. Saquinavir, lopinavir, and darunavir are potent against wild-type HIV-2 isolates and should be preferred as first-line options for HIV-2-infected patients. Other protease inhibitors are less active against HIV-2 than against HIV-1.
Antiviral activity against HIV 2 subtype B clinical isolate expressing 12Q-14R-17G/D-19P-61N-62I-92A protease gene sequence from HIV2 infected patient plasma and PBMC obtained before compound treatment measured after 13 months
|
Human immunodeficiency virus 2
|
300.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors.
Year : 2008
Volume : 52
Issue : 4
First Page : 1545
Last Page : 1548
Authors : Desbois D, Roquebert B, Peytavin G, Damond F, Collin G, Bénard A, Campa P, Matheron S, Chêne G, Brun-Vézinet F, Descamps D, French ANRS HIV-2 Cohort (ANRS CO 05 VIH-2).
Abstract : We determine phenotypic susceptibility of human immunodeficiency virus type 2 (HIV-2) isolates to amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, saquinavir, and tipranavir. Saquinavir, lopinavir, and darunavir are potent against wild-type HIV-2 isolates and should be preferred as first-line options for HIV-2-infected patients. Other protease inhibitors are less active against HIV-2 than against HIV-1.
Antiviral activity against HIV 2 subtype B clinical isolate expressing 41D protease gene sequence from HIV2 infected patient plasma and PBMC obtained before compound treatment measured after 13 months
|
Human immunodeficiency virus 2
|
300.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors.
Year : 2008
Volume : 52
Issue : 4
First Page : 1545
Last Page : 1548
Authors : Desbois D, Roquebert B, Peytavin G, Damond F, Collin G, Bénard A, Campa P, Matheron S, Chêne G, Brun-Vézinet F, Descamps D, French ANRS HIV-2 Cohort (ANRS CO 05 VIH-2).
Abstract : We determine phenotypic susceptibility of human immunodeficiency virus type 2 (HIV-2) isolates to amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, saquinavir, and tipranavir. Saquinavir, lopinavir, and darunavir are potent against wild-type HIV-2 isolates and should be preferred as first-line options for HIV-2-infected patients. Other protease inhibitors are less active against HIV-2 than against HIV-1.
Antiviral activity against Human immunodeficiency virus type 2 (ISOLATE ROD) after 13 months
|
Human immunodeficiency virus type 2 (ISOLATE ROD)
|
400.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors.
Year : 2008
Volume : 52
Issue : 4
First Page : 1545
Last Page : 1548
Authors : Desbois D, Roquebert B, Peytavin G, Damond F, Collin G, Bénard A, Campa P, Matheron S, Chêne G, Brun-Vézinet F, Descamps D, French ANRS HIV-2 Cohort (ANRS CO 05 VIH-2).
Abstract : We determine phenotypic susceptibility of human immunodeficiency virus type 2 (HIV-2) isolates to amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, saquinavir, and tipranavir. Saquinavir, lopinavir, and darunavir are potent against wild-type HIV-2 isolates and should be preferred as first-line options for HIV-2-infected patients. Other protease inhibitors are less active against HIV-2 than against HIV-1.
Antiviral activity against Human immunodeficiency virus type 1 (BRU ISOLATE) after 13 months
|
Human immunodeficiency virus type 1 (BRU ISOLATE)
|
50.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors.
Year : 2008
Volume : 52
Issue : 4
First Page : 1545
Last Page : 1548
Authors : Desbois D, Roquebert B, Peytavin G, Damond F, Collin G, Bénard A, Campa P, Matheron S, Chêne G, Brun-Vézinet F, Descamps D, French ANRS HIV-2 Cohort (ANRS CO 05 VIH-2).
Abstract : We determine phenotypic susceptibility of human immunodeficiency virus type 2 (HIV-2) isolates to amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, saquinavir, and tipranavir. Saquinavir, lopinavir, and darunavir are potent against wild-type HIV-2 isolates and should be preferred as first-line options for HIV-2-infected patients. Other protease inhibitors are less active against HIV-2 than against HIV-1.
Antiviral activity against HIV 2 subtype H expressing 10I-40P-41Y-60H-63N-70T-73G-89L-92E protease gene sequence from HIV2 infected patient plasma and PBMC obtained before compound treatment measured after 13 months
|
Human immunodeficiency virus 2
|
400.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors.
Year : 2008
Volume : 52
Issue : 4
First Page : 1545
Last Page : 1548
Authors : Desbois D, Roquebert B, Peytavin G, Damond F, Collin G, Bénard A, Campa P, Matheron S, Chêne G, Brun-Vézinet F, Descamps D, French ANRS HIV-2 Cohort (ANRS CO 05 VIH-2).
Abstract : We determine phenotypic susceptibility of human immunodeficiency virus type 2 (HIV-2) isolates to amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, saquinavir, and tipranavir. Saquinavir, lopinavir, and darunavir are potent against wild-type HIV-2 isolates and should be preferred as first-line options for HIV-2-infected patients. Other protease inhibitors are less active against HIV-2 than against HIV-1.
Antiviral activity against HIV1 LAI infected in human MT2 cells by MTT assay
|
Human immunodeficiency virus 1
|
170.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against HIV2 EHO infected in human MT2 cells by MTT assay
|
Human immunodeficiency virus 2
|
300.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against HIV2 ROD infected in human MT2 cells by MTT assay
|
Human immunodeficiency virus type 2 (ISOLATE ROD)
|
330.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against wild type HIV1 NL4-3 infected in human MT4 cells by MTT assay
|
Human immunodeficiency virus 1
|
320.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against HIV1 expressing protease L10I/G48V/I54V/A71V/I84V/L90M mutant infected in human MT4 cells selected at 5 uM of saquinavir by MTT assay
|
Human immunodeficiency virus 1
|
22.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against HIV1 expressing protease L10F/D30N/K45I/A71V/T74S mutant infected in human MT4 cells selected at 5 uM of nelfinavir by MTT assay
|
Human immunodeficiency virus 1
|
39.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against HIV1 expressing protease L10F/M46I/I50V/A71V/I84V/L90M mutant infected in human MT4 cells selected at 5 uM of amprenavir by MTT assay
|
Human immunodeficiency virus 1
|
220.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against HIV1 expressing protease L10F/M46I/I54V/V82A mutant infected in human MT4 cells selected at 5 uM of Lopinavir by MTT assay
|
Human immunodeficiency virus 1
|
310.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against HIV1 expressing protease L23I/E34Q/K43I/M46I/I50L/G51A/L63P/A71V/V82A/T91A mutant infected in human MT4 cells selected at 5 uM of atazanavir by MTT assay
|
Human immunodeficiency virus 1
|
410.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against wild type HIV1 ERS104 containing protease L36P mutant infected in human PHA-PBMC cells by MTT assay
|
Human immunodeficiency virus 1
|
120.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against multidrug-resistant HIV1 isolate B containing protease L10I, K14R, L33I, M36I,M46I, F53I, K55R, I62V, L63P, A71V, G73S, V82A, L90M, and I93L mutant infected in human PHA-PBMC cells by MTT assay
|
Human immunodeficiency virus 1
|
180.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against multidrug-resistant HIV1 isolate C containing protease L10I, I15V, K20R, L24I, M36I, M46L, I54V, I62V, L63P, K70Q, V82A, and L89M mutant infected in human PHA-PBMC cells by MTT assay
|
Human immunodeficiency virus 1
|
380.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against multidrug-resistant HIV1 isolate G containing L10I, V11I, T12E, I15V, L19I,R41K, M46L, L63P, A71T, V82A, and L90M mutant infected in human PHA-PBMC cells by MTT assay
|
Human immunodeficiency virus 1
|
240.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against multidrug-resistant HIV1 isolate TM containing L10I, K14R, R41K, M46L, I54V, L63P, A71V, V82A, L90M, and I93L mutant infected in human PHA-PBMC cells by MTT assay
|
Human immunodeficiency virus 1
|
380.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against multidrug-resistant HIV1 isolate MM containing L10I, K43T, M46L, I54V, L63P, A71V, V82A, L90M, and Q92K mutant infected in human PHA-PBMC cells by MTT assay
|
Human immunodeficiency virus 1
|
350.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against multidrug-resistant HIV1 isolate JSL containing L10I, L24I, I33F, E35D, M36I, N37S, M46L, I54V, R57K, I62V, L63P, A71V, G73S, and V82A mutant infected in human PHA-PBMC cells by MTT assay
|
Human immunodeficiency virus 1
|
230.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against HIV1 expressing protease L10I/L24I/M46I/V82I/I84V mutant infected in human MT4 cells selected after 50 passages of GRL-216 by MTT assay
|
Human immunodeficiency virus 1
|
29.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against HIV1 expressing protease L10F/M46I/T91S mutant infected in human MT4 cells selected at 1 uM of GRL-246 by MTT assay
|
Human immunodeficiency virus 1
|
95.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against HIV1 expressing protease L10F/M46L/I50V/A71Vmutant infected in human MT4 cells selected at 1 uM of GRL-286 by MTT assay
|
Human immunodeficiency virus 1
|
37.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Antiviral activity against HIV1 expressing protease L10F/M46M,I/Q61Q mutant infected in human MT4 cells selected at 1 uM of GRL-396 by MTT assay
|
Human immunodeficiency virus 1
|
42.0
nM
|
|
Journal : Antimicrob. Agents Chemother.
Title : Novel protease inhibitors (PIs) containing macrocyclic components and 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane that are potent against multi-PI-resistant HIV-1 variants in vitro.
Year : 2010
Volume : 54
Issue : 8
First Page : 3460
Last Page : 3470
Authors : Tojo Y, Koh Y, Amano M, Aoki M, Das D, Kulkarni S, Anderson DD, Ghosh AK, Mitsuya H.
Abstract : Natural products with macrocyclic structural features often display intriguing biological properties. Molecular design incorporating macrocycles may lead to molecules with unique protein-ligand interactions. We generated novel human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a macrocycle and bis-tetrahydrofuranylurethane. Four such compounds exerted potent activity against HIV-1LAI and had 50% effective concentrations (EC50s) of as low as 0.002 microM with minimal cytotoxicity. GRL-216 and GRL-286 blocked the replication of HIV-1NL4-3 variants selected by up to 5 microM saquinavir, ritonavir, nelfinavir, lopinavir, or atazanavir; they had EC50s of 0.020 to 0.046 microM and potent activities against six multi-PI-resistant clinical HIV-1 (HIVmPIr) variants with EC50s of 0.027 to 0.089 microM. GRL-216 and -286 also blocked HIV-1 protease dimerization as efficiently as darunavir. When HIV-1NL4-3 was selected by GRL-216, it replicated progressively more poorly and failed to replicate in the presence of >0.26 microM GRL-216, suggesting that the emergence of GRL-216-resistant HIV-1 variants is substantially delayed. At passage 50 with GRL-216 (the HIV isolate selected with GRL-216 at up to 0.16 microM [HIV216-0.16 microM]), HIV-1NL4-3 containing the L10I, L24I, M46L, V82I, and I84V mutations remained relatively sensitive to PIs, including darunavir, with the EC50s being 3- to 8-fold-greater than the EC50 of each drug for HIV-1NL4-3. Interestingly, HIV216-0.16 microM had 10-fold increased sensitivity to tipranavir. Analysis of the protein-ligand X-ray structures of GRL-216 revealed that the macrocycle occupied a greater volume of the binding cavity of protease and formed greater van der Waals interactions with V82 and I84 than darunavir. The present data warrant the further development of GRL-216 as a potential antiviral agent for treating individuals harboring wild-type and/or HIVmPIr.
Inhibition of human liver OATP1B1 expressed in HEK293 Flp-In cells assessed as reduction in E17-betaG uptake at 20 uM by scintillation counting
|
Homo sapiens
|
89.5
%
|
|
Journal : J. Med. Chem.
Title : Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Year : 2012
Volume : 55
Issue : 10
First Page : 4740
Last Page : 4763
Authors : Karlgren M, Vildhede A, Norinder U, Wisniewski JR, Kimoto E, Lai Y, Haglund U, Artursson P.
Abstract : The hepatic organic anion transporting polypeptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drug-drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors.
Inhibition of human liver OATP1B3 expressed in HEK293 Flp-In cells assessed as reduction in [3H]E17-betaG uptake at 20 uM incubated for 5 mins by scintillation counting
|
Homo sapiens
|
109.0
%
|
|
Journal : J. Med. Chem.
Title : Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Year : 2012
Volume : 55
Issue : 10
First Page : 4740
Last Page : 4763
Authors : Karlgren M, Vildhede A, Norinder U, Wisniewski JR, Kimoto E, Lai Y, Haglund U, Artursson P.
Abstract : The hepatic organic anion transporting polypeptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drug-drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors.
Inhibition of human liver OATP2B1 expressed in HEK293 Flp-In cells assessed as reduction in [3H]E3S uptake at 20 uM incubated for 5 mins by scintillation counting
|
Homo sapiens
|
99.0
%
|
|
Journal : J. Med. Chem.
Title : Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Year : 2012
Volume : 55
Issue : 10
First Page : 4740
Last Page : 4763
Authors : Karlgren M, Vildhede A, Norinder U, Wisniewski JR, Kimoto E, Lai Y, Haglund U, Artursson P.
Abstract : The hepatic organic anion transporting polypeptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drug-drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors.
Inhibition of ACE (unknown origin) assessed as 3-Hydroxybutyril-glycil-glycil-glycine conversion to 3-hydroxybutyric acid at 128 uM after 60 mins by WST assay relative to control
|
Homo sapiens
|
31.0
%
|
|
Journal : J. Med. Chem.
Title : Experimental confirmation of new drug-target interactions predicted by Drug Profile Matching.
Year : 2013
Volume : 56
Issue : 21
First Page : 8377
Last Page : 8388
Authors : Végner L, Peragovics Á, Tombor L, Jelinek B, Czobor P, Bender A, Simon Z, Málnási-Csizmadia A.
Abstract : We recently introduced Drug Profile Matching (DPM), a novel affinity fingerprinting-based in silico drug repositioning approach. DPM is able to quantitatively predict the complete effect profiles of compounds via probability scores. In the present work, in order to investigate the predictive power of DPM, three effect categories, namely, angiotensin-converting enzyme inhibitor, cyclooxygenase inhibitor, and dopamine agent, were selected and predictions were verified by literature analysis as well as experimentally. A total of 72% of the newly predicted and tested dopaminergic compounds were confirmed by tests on D1 and D2 expressing cell cultures. 33% and 23% of the ACE and COX inhibitory predictions were confirmed by in vitro tests, respectively. Dose-dependent inhibition curves were measured for seven drugs, and their inhibitory constants (Ki) were determined. Our study overall demonstrates that DPM is an effective approach to reveal novel drug-target pairs that may result in repositioning these drugs.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of Caco-2 cells at 10 uM after 48 hours by high content imaging
|
Homo sapiens
|
3.26
%
|
|
Title : Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection
Year : 2020
Authors : Bernhard Ellinger, Denisa Bojkova, Andrea Zaliani, Jindrich Cinatl, Carsten Claussen, Sandra Westhaus, Jeanette Reinshagen, Maria Kuzikov, Markus Wolf, Gerd Geisslinger, Philip Gribbon, Sandra Ciesek
Abstract : To identify possible candidates for progression towards clinical studies against SARS-CoV-2, we screened a well-defined collection of 5632 compounds including 3488 compounds which have undergone clinical investigations (marketed drugs, phases 1 -3, and withdrawn) across 600 indications. Compounds were screened for their inhibition of viral induced cytotoxicity using the human epithelial colorectal adenocarcinoma cell line Caco-2 and a SARS-CoV-2 isolate. The primary screen of 5632 compounds gave 271 hits. A total of 64 compounds with IC50 <20 µM were identified, including 19 compounds with IC50 < 1 µM. Of this confirmed hit population, 90% have not yet been previously reported as active against SARS-CoV-2 in-vitro cell assays. Some 37 of the actives are launched drugs, 19 are in phases 1-3 and 10 pre-clinical. Several inhibitors were associated with modulation of host pathways including kinase signaling P53 activation, ubiquitin pathways and PDE activity modulation, with long chain acyl transferases were effective viral inhibitors.
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
13.32
%
|
|
Title : Identification of inhibitors of SARS-Cov2 M-Pro enzymatic activity using a small molecule repurposing screen
Year : 2020
Authors : Maria Kuzikov, Elisa Costanzi, Jeanette Reinshagen, Francesca Esposito, Laura Vangeel, Markus Wolf, Bernhard Ellinger, Carsten Claussen, Gerd Geisslinger, Angela Corona, Daniela Iaconis, Carmine Talarico, Candida Manelfi, Rolando Cannalire, Giulia Rossetti, Jonas Gossen, Simone Albani, Francesco Musiani, Katja Herzog, Yang Ye, Barbara Giabbai, Nicola Demitri, Dirk Jochmans, Steven De Jonghe, Jasper Rymenants, Vincenzo Summa, Enzo Tramontano, Andrea R. Beccari, Pieter Leyssen, Paola Storici, Johan Neyts, Philip Gribbon, and Andrea Zaliani
Abstract : Compound repurposing is an important strategy being pursued in the identification of effective treatment against the SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (M-Pro), also termed 3CL-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyprotein into 11 non-structural proteins. We report the results of a screening campaign involving ca 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and chemicals regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, but we have also identified 68 compounds with IC50 lower than 1 uM and 127 compounds with IC50 lower than 5 uM. Profiling showed 67% of confirmed hits were selective (> 5 fold) against other Cys- and Ser- proteases (Chymotrypsin and Cathepsin-L) and MERS 3CL-Pro. Selected compounds were also analysed in their binding characteristics.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
0.18
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
0.18
%
|
|
Title : Cytopathic SARS-Cov2 screening on VERO-E6 cells in a large repurposing effort
Year : 2020
Authors : Andrea Zaliani, Laura Vangeel, Jeanette Reinshagen, Daniela Iaconis, Maria Kuzikov, Oliver Keminer, Markus Wolf, Bernhard Ellinger, Francesca Esposito, Angela Corona, Enzo Tramontano, Candida Manelfi, Katja Herzog, Dirk Jochmans, Steven De Jonghe, Winston Chiu, Thibault Francken, Joost Schepers, Caroline Collard, Kayvan Abbasi, Carsten Claussen , Vincenzo Summa, Andrea R. Beccari, Johan Neyts, Philip Gribbon and Pieter Leyssen
Abstract : Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.