Concentration giving half of the maximal ATPase activity calculated for the high-affinity binding site of the CHO P-Glycoprotein (P-gp) in two-affinity model
|
Cricetulus griseus
|
100.0
nM
|
|
Journal : J. Med. Chem.
Title : Pharmacophore model of drugs involved in P-glycoprotein multidrug resistance: explanation of structural variety (hypothesis).
Year : 2002
Volume : 45
Issue : 26
First Page : 5671
Last Page : 5686
Authors : Pajeva IK, Wiese M.
Abstract : A general pharmacophore model of P-glycoprotein (P-gp) drugs is proposed that is based on a highly diverse data set and relates to the verapamil binding site of the protein. It is derived from structurally different drugs using the program GASP. The pharmacophore model consists of two hydrophobic points, three hydrogen bond (HB) acceptor points, and one HB donor point. Pharmacophore patterns of various drugs are obtained, and different binding modes are presumed for some of them. It is concluded that the binding affinity of the drugs depends on the number of the pharmacophore points simultaneously involved in the interaction with P-gp. On the basis of the obtained results, a hypothesis is proposed to explain the broad structural variety of the P-gp substrates and inhibitors: (i) the verapamil binding site of P-gp has several points that can participate in hydrophobic and HB interactions; (ii) different drugs can interact with different receptor points in different binding modes.
Inhibition of binding of Batrachotoxinin [3H]BTX-B to high affinity sites on voltage dependent sodium channels in a vesicular preparation from guinea pig cerebral cortex at 10 uM
|
Cavia porcellus
|
100.0
%
|
|
Journal : J. Med. Chem.
Title : [3H]Batrachotoxinin A 20 alpha-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs.
Year : 1985
Volume : 28
Issue : 3
First Page : 381
Last Page : 388
Authors : McNeal ET, Lewandowski GA, Daly JW, Creveling CR.
Abstract : [3H]Batrachotoxinin A benzoate ( [3H]BTX-B) binds with high affinity to sites on voltage-dependent sodium channels in a vesicular preparation from guinea pig cerebral cortex. In this preparation, local anesthetics competitively antagonize the binding of [3H]BTX-B. The potencies of some 40 classical local anesthetics and a variety of catecholamine, histamine, serotonin, adenosine, GABA, glycine, acetylcholine, and calcium antagonists, tranquilizers, antidepressants, barbiturates, anticonvulsants, steroids, vasodilators, antiinflammatories, anticoagulants, analgesics, and other agents have been determined. An excellent correlation with the known local anesthetic activity of many of these agents indicate that antagonism of binding of [3H]BTX-B binding provides a rapid, quantitative, and facile method for the screening and investigation of local anesthetic activity.
Inhibition of dopamine uptake at VMAT in bovine chromaffin granule ghosts
|
Bos taurus
|
1.0
nM
|
|
Journal : J. Med. Chem.
Title : Vesicular monoamine transporter substrate/inhibitor activity of MPTP/MPP+ derivatives: a structure-activity study.
Year : 2008
Volume : 51
Issue : 4
First Page : 760
Last Page : 768
Authors : Wimalasena DS, Perera RP, Heyen BJ, Balasooriya IS, Wimalasena K.
Abstract : The active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), N-methyl-4-phenylpyridinium (MPP(+)), selectively destroys the dopaminergic neurons and induces the symptoms of Parkinson's disease. Inhibition of mitochondrial complex I and/or the perturbation of dopamine metabolism through cellular and granular accumulation have been proposed as some of the major causes of neurotoxicity. In the present study we have synthesized and characterized a number of MPTP and MPP(+) derivatives that are suitable for the comparative neurotoxicity and complex I inhibition versus dopamine metabolism perturbation studies. Structure-activity studies with bovine chromaffin granule ghosts show that 3'-hydroxy-MPP(+) is one of the best known substrates for the vesicular monoamine transporter (VMAT). A series of compounds that combine the structural features of MPP(+) and a previously characterized VMAT inhibitor, 3-amino-2-phenyl-propene, have been identified as the most effective VMAT inhibitors. These derivatives have been used to define the structural requirements of the VMAT substrate and inhibitor activities.
Inhibition of NorA pump-mediated ethidium bromide efflux in Staphylococcus aureus K1199B at 50 uM by fluorimetric analysis
|
Staphylococcus aureus
|
81.6
%
|
|
Journal : J. Med. Chem.
Title : From phenothiazine to 3-phenyl-1,4-benzothiazine derivatives as inhibitors of the Staphylococcus aureus NorA multidrug efflux pump.
Year : 2008
Volume : 51
Issue : 14
First Page : 4321
Last Page : 4330
Authors : Sabatini S, Kaatz GW, Rossolini GM, Brandini D, Fravolini A.
Abstract : Overexpression of efflux pumps is an important mechanism by which bacteria evade effects of substrate antimicrobial agents and inhibition of such pumps is a promising strategy to circumvent this resistance mechanism. NorA is a Staphylococcus aureus multidrug efflux pump, the activity of which confers decreased susceptibility to many structurally unrelated agents, including fluoroquinolones, resulting in a multidrug resistant (MDR) phenotype. In this work, a series of 1,4-benzothiazine derivatives were designed and synthesized as a minimized structural template of phenothiazine MDR efflux pump inhibitors (EPIs) in an effort to identify more potent S. aureus NorA EPIs. Almost all derivatives evaluated showed good activity in combination with ciprofloxacin against S. aureus ATCC 25923; some were capable of completely restoring ciprofloxacin activity in a norA-overexpressing strain (SA-K2378). Compounds 6k and 7j displayed good activity against SA-1199B, a strain that also overexpresses norA, in an ethidium bromide (EtBr) efflux inhibition assay.
Inhibition of MepA efflux pump in Staphylococcus aureus K2361 assessed as reduction of ethidium bromide efflux at 30 uM for 5 mins
|
Staphylococcus aureus
|
32.0
%
|
|
Journal : Eur. J. Med. Chem.
Title : Synthesis and evaluation of fluoroquinolone derivatives as substrate-based inhibitors of bacterial efflux pumps.
Year : 2008
Volume : 43
Issue : 11
First Page : 2453
Last Page : 2463
Authors : German N, Wei P, Kaatz GW, Kerns RJ.
Abstract : Bacterial efflux pump systems contribute to antimicrobial resistance in pathogenic bacteria. The co-administration of bacterial efflux pump inhibitors with antibiotics is being pursued to overcome efflux-mediated resistance to antibiotics. In this study we investigated a strategy for converting broad-spectrum efflux pump substrates, fluoroquinolone antibacterial agents which are inherently recognized by most efflux transporters, into expanded spectrum efflux pump inhibitors. Employing this strategy against organisms expressing efflux pumps from the MFS, MATE and RND classes of pump systems, we report here the identification of an ofloxacin-based EPI that is a potent inhibitor of MFS (NorA) and MATE (MepA) efflux pumps in Staphylococcus aureus. The methods described here outline a process that we feel will be broadly applicable to the systematic identification of bacterial efflux pump inhibitors.
Inhibition of NorA efflux pump in Staphylococcus aureus K2361 assessed as reduction of ethidium bromide efflux at 30 uM for 5 mins
|
Staphylococcus aureus
|
81.0
%
|
|
Journal : Eur. J. Med. Chem.
Title : Synthesis and evaluation of fluoroquinolone derivatives as substrate-based inhibitors of bacterial efflux pumps.
Year : 2008
Volume : 43
Issue : 11
First Page : 2453
Last Page : 2463
Authors : German N, Wei P, Kaatz GW, Kerns RJ.
Abstract : Bacterial efflux pump systems contribute to antimicrobial resistance in pathogenic bacteria. The co-administration of bacterial efflux pump inhibitors with antibiotics is being pursued to overcome efflux-mediated resistance to antibiotics. In this study we investigated a strategy for converting broad-spectrum efflux pump substrates, fluoroquinolone antibacterial agents which are inherently recognized by most efflux transporters, into expanded spectrum efflux pump inhibitors. Employing this strategy against organisms expressing efflux pumps from the MFS, MATE and RND classes of pump systems, we report here the identification of an ofloxacin-based EPI that is a potent inhibitor of MFS (NorA) and MATE (MepA) efflux pumps in Staphylococcus aureus. The methods described here outline a process that we feel will be broadly applicable to the systematic identification of bacterial efflux pump inhibitors.
Antiplasmodial activity against Plasmodium falciparum 7G8 after 72 hrs by SYBR green assay
|
Plasmodium falciparum 7G8
|
316.23
nM
|
|
Journal : Nat. Chem. Biol.
Title : Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
Year : 2009
Volume : 5
Issue : 10
First Page : 765
Last Page : 771
Authors : Yuan J, Johnson RL, Huang R, Wichterman J, Jiang H, Hayton K, Fidock DA, Wellems TE, Inglese J, Austin CP, Su XZ.
Abstract : Studies of gene function and molecular mechanisms in Plasmodium falciparum are hampered by difficulties in characterizing and measuring phenotypic differences between individual parasites. We screened seven parasite lines for differences in responses to 1,279 bioactive chemicals. Hundreds of compounds were active in inhibiting parasite growth; 607 differential chemical phenotypes, defined as pairwise IC(50) differences of fivefold or more between parasite lines, were cataloged. We mapped major determinants for three differential chemical phenotypes between the parents of a genetic cross, and we identified target genes by fine mapping and testing the responses of parasites in which candidate genes were genetically replaced with mutant alleles. Differential sensitivity to dihydroergotamine methanesulfonate (1), a serotonin receptor antagonist, was mapped to a gene encoding the homolog of human P-glycoprotein (PfPgh-1). This study identifies new leads for antimalarial drugs and demonstrates the utility of a high-throughput chemical genomic strategy for studying malaria traits.
Antiplasmodial activity against Plasmodium falciparum W2 after 72 hrs by SYBR green assay
|
Plasmodium falciparum
|
794.33
nM
|
|
Journal : Nat. Chem. Biol.
Title : Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
Year : 2009
Volume : 5
Issue : 10
First Page : 765
Last Page : 771
Authors : Yuan J, Johnson RL, Huang R, Wichterman J, Jiang H, Hayton K, Fidock DA, Wellems TE, Inglese J, Austin CP, Su XZ.
Abstract : Studies of gene function and molecular mechanisms in Plasmodium falciparum are hampered by difficulties in characterizing and measuring phenotypic differences between individual parasites. We screened seven parasite lines for differences in responses to 1,279 bioactive chemicals. Hundreds of compounds were active in inhibiting parasite growth; 607 differential chemical phenotypes, defined as pairwise IC(50) differences of fivefold or more between parasite lines, were cataloged. We mapped major determinants for three differential chemical phenotypes between the parents of a genetic cross, and we identified target genes by fine mapping and testing the responses of parasites in which candidate genes were genetically replaced with mutant alleles. Differential sensitivity to dihydroergotamine methanesulfonate (1), a serotonin receptor antagonist, was mapped to a gene encoding the homolog of human P-glycoprotein (PfPgh-1). This study identifies new leads for antimalarial drugs and demonstrates the utility of a high-throughput chemical genomic strategy for studying malaria traits.
Inhibition of NorA in Staphylococcus aureus 1199B assessed as reduction in ethidium bromide efflux at 50 uM by fluorimetry after 5 mins
|
Staphylococcus aureus
|
84.8
%
|
|
Journal : J. Med. Chem.
Title : Discovery of novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus.
Year : 2011
Volume : 54
Issue : 1
First Page : 354
Last Page : 365
Authors : Brincat JP, Carosati E, Sabatini S, Manfroni G, Fravolini A, Raygada JL, Patel D, Kaatz GW, Cruciani G.
Abstract : Four novel inhibitors of the NorA efflux pump of Staphylococcus aureus, discovered through a virtual screening process, are reported. The four compounds belong to different chemical classes and were tested for their in vitro ability to block the efflux of a well-known NorA substrate, as well as for their ability to potentiate the effect of ciprofloxacin (CPX) on several strains of S. aureus, including a NorA overexpressing strain. Additionally, the MIC values of each of the compounds individually are reported. A structure-activity relationship study was also performed on these novel chemotypes, revealing three new compounds that are also potent NorA inhibitors. The virtual screening procedure employed FLAP, a new methodology based on GRID force field descriptors.
Inhibition of NorA in Staphylococcus aureus 1199B assessed as inhibition of ethidium bromide efflux at 50 uM by fluorimetry
|
Staphylococcus aureus
|
84.8
%
|
|
Journal : J. Med. Chem.
Title : Evolution from a natural flavones nucleus to obtain 2-(4-Propoxyphenyl)quinoline derivatives as potent inhibitors of the S. aureus NorA efflux pump.
Year : 2011
Volume : 54
Issue : 16
First Page : 5722
Last Page : 5736
Authors : Sabatini S, Gosetto F, Manfroni G, Tabarrini O, Kaatz GW, Patel D, Cecchetti V.
Abstract : Overexpression of efflux pumps is an important mechanism by which bacteria evade the effects of substrate antimicrobial agents. Inhibition of such pumps is a promising strategy to circumvent this resistance mechanism. NorA is a Staphylococcus aureus efflux pump that confers reduced susceptibility to many structurally unrelated agents, including fluoroquinolones, resulting in a multidrug resistant phenotype. In this work, a series of 2-phenyl-4(1H)-quinolone and 2-phenyl-4-hydroxyquinoline derivatives, obtained by modifying the flavone nucleus of known efflux pump inhibitors (EPIs), were synthesized in an effort to identify more potent S. aureus NorA EPIs. The 2-phenyl-4-hydroxyquinoline derivatives 28f and 29f display potent EPI activity against SA-1199B, a strain that overexpresses norA, in an ethidium bromide efflux inhibition assay. The same compounds, in combination with ciprofloxacin, were able to completely restore its antibacterial activity against both S. aureus SA-K2378 and SA-1199B, norA-overexpressing strains.
DRUGMATRIX: Calcium Channel Type L, Dihydropyridine radioligand binding (ligand: [3H] Nitrendipine)
|
Rattus norvegicus
|
821.0
nM
|
|
DRUGMATRIX: Calcium Channel Type L, Dihydropyridine radioligand binding (ligand: [3H] Nitrendipine)
|
Rattus norvegicus
|
528.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
DRUGMATRIX: Sodium Channel, Site 2 radioligand binding (ligand: [3H] Batrachotoxin)
|
Rattus norvegicus
|
774.0
nM
|
|
DRUGMATRIX: Sodium Channel, Site 2 radioligand binding (ligand: [3H] Batrachotoxin)
|
Rattus norvegicus
|
706.0
nM
|
|
Title : DrugMatrix in vitro pharmacology data
Authors : Scott S. Auerbach, DrugMatrix¨ and ToxFX¨ Coordinator National Toxicology Program
Abstract : The DrugMatrix Pharmacology data is a subset of the data freely available from the National Toxicology Program. For more details see:https://ntp.niehs.nih.gov/drugmatrix/index.html
Inhibition of p-glycoprotein expression in vinblastine-sensitive human MCF7 cells at 5 ug/ml after 24 hrs by by immunofluorescence flow cytometry relative to control
|
Homo sapiens
|
38.0
%
|
|
Journal : J. Nat. Prod.
Title : Reversal of multidrug resistance by morning glory resin glycosides in human breast cancer cells.
Year : 2012
Volume : 75
Issue : 1
First Page : 93
Last Page : 97
Authors : Figueroa-González G, Jacobo-Herrera N, Zentella-Dehesa A, Pereda-Miranda R.
Abstract : Reversal of multidrug resistance (MDR) by thirty resin glycosides from the morning glory family (Convolvulaceae) was evaluated in vinblastine-resistant human breast carcinoma cells (MCF-7/Vin). The effects of these amphipathic compounds on the cytotoxicity and P-glycoprotein (P-gp)-mediated MDR were estimated with the sulforhodamine B colorimetric assay. Active noncytotoxic compounds exerted a potentiation effect of vinblastine susceptibility by 1- to over 1906-fold at tested concentrations of 5 and 25 μg/mL. Murucoidin V (1) enhanced vinblastine activity 255-fold when incorporated at 25 μg/mL and also, based on flow cytometry, significantly increased the intracellular accumulation of rhodamine 123 with the use of reserpine as a positive control for a MDR reversal agent. Incubation of MCF-7/Vin cells with 1 caused an increase in uptake and notably lowered the efflux rate of rhodamine 123. Decreased expression of P-glycoprotein by compound 1 was detected by immunofluorescence flow cytometry after incubation with an anti-P-gp monoclonal antibody. These results suggest that resin glycosides represent potential efflux pump inhibitors for overcoming MDR in cancer therapy.
Inhibition of norA-mediated EtBr efflux in Staphylococcus aureus SA1199B overexpressing norA and expressing A116E GrlA mutation at 50 uM by fluorometry
|
Staphylococcus aureus
|
84.8
%
|
|
Journal : J. Med. Chem.
Title : Pyrazolo[4,3-c][1,2]benzothiazines 5,5-dioxide: a promising new class of Staphylococcus aureus NorA efflux pump inhibitors.
Year : 2012
Volume : 55
Issue : 7
First Page : 3568
Last Page : 3572
Authors : Sabatini S, Gosetto F, Serritella S, Manfroni G, Tabarrini O, Iraci N, Brincat JP, Carosati E, Villarini M, Kaatz GW, Cecchetti V.
Abstract : The increasing resistance to antibacterials commonly employed in the clinic and the growth of multidrug resistant strains suggest that the development of new therapeutic approaches should be of primary concern. In this context, EPIs may restore life to old drugs. In the present work, the EPI activity of the COX-2 inhibitor celecoxib was confirmed and a new class of pyrazolo[4,3-c][1,2]benzothiazine 5,5-dioxide analogues acting as inhibitors of the Staphylococcus aureus NorA multidrug efflux pump was identified.
TP_TRANSPORTER: inhibition of Daunorubicin efflux in NIH-3T3-G185 cells
|
None
|
500.0
nM
|
|
Journal : Biochem. Biophys. Res. Commun.
Title : Active transport of fluorescent P-glycoprotein substrates: evaluation as markers and interaction with inhibitors.
Year : 2001
Volume : 289
Issue : 1
First Page : 580
Last Page : 585
Authors : Wang EJ, Casciano CN, Clement RP, Johnson WW.
Abstract : With P-glycoprotein (P-gp) continuing to have prominence among the ABC transporters for its ability to remove various xenobiotics from many cell types, accurate and robust methods for estimating the exposure of drug, carcinogen, toxicant, pesticide, and even some endobiotics to tissues and cells affected by P-gp are valuable. The inhibition of P-gp active transport of molecules, therefore, has often been quantified by concentration dependence of inhibitor effect on fluorescent substrate marker efflux mediated by this enzyme, with much evidence indicating two asymmetric yet interdependent substrate binding sites on P-gp. A uniqueness in the pair of binding sites could result in distinct effects of an inhibitor on the transport of certain substrates, thus leading to differences in fluorescent substrate responsiveness or sensitivity. Seven different fluorescent substrates of P-gp were quantitatively tested for their responsiveness to inhibition by a wide range of P-gp substrates/inhibitors. Interesting differences were observed in the IC(50) values caused by each of the inhibitors employed, in part exemplified by DNR and LDS being generally more sensitive to inhibition effects than any other fluorescent marker. However, no clear trend emerged to designate any fluorochrome marker as the most or least responsive to inhibition. Furthermore, LDS is more sensitive to some P-gp inhibitors than the substrate marker DNR, generally the most responsive. These results support the assertion of two unequal substrate binding sites that are allosterically dependent on each other. Therefore, an inhibitor that favors binding to the site opposite from that favored by a particular marker may have significant transduced effects through the protein between the two binding sites. Nevertheless, although either DNR or LDS is generally the fluorescent substrate most responsive to inhibition, there may be other substrates yet even more sensitive.
TP_TRANSPORTER: increase in Vinblastine intracellular accumulation in MDR1-expressing LLC-PK1 cells
|
None
|
970.0
nM
|
|
Journal : Mol. Pharmacol.
Title : Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein.
Year : 2002
Volume : 61
Issue : 1
First Page : 964
Last Page : 973
Authors : Ekins S, Kim RB, Leake BF, Dantzig AH, Schuetz EG, Lan LB, Yasuda K, Shepard RL, Winter MA, Schuetz JD, Wikel JH, Wrighton SA.
Abstract : P-glycoprotein (P-gp) is an efflux transporter involved in limiting the oral bioavailability and tissue penetration of a variety of structurally divergent molecules. A better understanding of the structural requirements of modulators of P-gp function will aid in the design of therapeutic agents. Toward this goal, three-dimensional quantitative structure-activity relationship (3D-QSAR) models were generated using in vitro data associated with inhibition of P-gp function. Several approaches were undertaken with multiple iterations, yielding Catalyst 3D-QSAR models being able to qualitatively rank-order and predict IC(50) values for P-gp inhibitors excluded from the model in question. The success of these validations suggests that a P-gp pharmacophore for 27 inhibitors of digoxin transport in Caco-2 cells consisted of four hydrophobes and one hydrogen bond acceptor. A second pharmacophore generated with 21 inhibitors of vinblastine binding to plasma membrane vesicles derived from CEM/VLB(100) cells contained three ring aromatic features and one hydrophobic feature. A third pharmacophore generated with 17 inhibitors of vinblastine accumulation in P-gp expressing LLC-PK1 cells contained four hydrophobes and one hydrogen bond acceptor. A final pharmacophore was generated for inhibition of calcein accumulation in P-gp expressing LLC-PK1 cells and found to contain two hydrophobes, a ring aromatic feature, and a hydrogen bond donor. The similarity of features for the pharmacophores of P-gp inhibitors of digoxin transport and vinblastine binding suggest some commonality in their binding sites. Utilization of such models may prove to be of value for prediction of molecules that may modulate one or more P-gp binding sites.
Inhibition of norA-mediated ethidium bromide efflux in methicillin-resistant Staphylococcus aureus SA-1199B at 2.5 ug/ml by spectrofluorometric analysis
|
Staphylococcus aureus
|
30.0
%
|
|
Journal : Bioorg. Med. Chem.
Title : Chalcone inhibitors of the NorA efflux pump in Staphylococcus aureus whole cells and enriched everted membrane vesicles.
Year : 2012
Volume : 20
Issue : 14
First Page : 4514
Last Page : 4521
Authors : Holler JG, Slotved HC, Mølgaard P, Olsen CE, Christensen SB.
Abstract : A library of 117 chalcones was screened for efflux pump inhibitory (EPI) activity against NorA mediated ethidium bromide efflux. Five of the chalcones (5-7, 9, and 10) were active and two chalcones (9 and 10) were equipotent to reserpine with IC(50)-values of 9.0 and 7.7 μM, respectively. Twenty chalcones were subsequently proved to be inhibitors of the NorA efflux pump in everted membrane vesicles. Compounds 5, 7, and 9 synergistically increased the effect of ciprofloxacin on Staphylococcus aureus. Our results suggest that chalcones might be developed into drugs for overcoming multidrug resistance based on efflux transporters of microorganisms.
Inhibition of norA-mediated ethidium bromide efflux in methicillin-resistant Staphylococcus aureus SA-1199B at 5 ug/ml by spectrofluorometric analysis
|
Staphylococcus aureus
|
48.1
%
|
|
Journal : Bioorg. Med. Chem.
Title : Chalcone inhibitors of the NorA efflux pump in Staphylococcus aureus whole cells and enriched everted membrane vesicles.
Year : 2012
Volume : 20
Issue : 14
First Page : 4514
Last Page : 4521
Authors : Holler JG, Slotved HC, Mølgaard P, Olsen CE, Christensen SB.
Abstract : A library of 117 chalcones was screened for efflux pump inhibitory (EPI) activity against NorA mediated ethidium bromide efflux. Five of the chalcones (5-7, 9, and 10) were active and two chalcones (9 and 10) were equipotent to reserpine with IC(50)-values of 9.0 and 7.7 μM, respectively. Twenty chalcones were subsequently proved to be inhibitors of the NorA efflux pump in everted membrane vesicles. Compounds 5, 7, and 9 synergistically increased the effect of ciprofloxacin on Staphylococcus aureus. Our results suggest that chalcones might be developed into drugs for overcoming multidrug resistance based on efflux transporters of microorganisms.
Inhibition of norA-mediated ethidium bromide efflux in methicillin-resistant Staphylococcus aureus SA-1199B at 10 ug/ml by spectrofluorometric analysis
|
Staphylococcus aureus
|
71.8
%
|
|
Journal : Bioorg. Med. Chem.
Title : Chalcone inhibitors of the NorA efflux pump in Staphylococcus aureus whole cells and enriched everted membrane vesicles.
Year : 2012
Volume : 20
Issue : 14
First Page : 4514
Last Page : 4521
Authors : Holler JG, Slotved HC, Mølgaard P, Olsen CE, Christensen SB.
Abstract : A library of 117 chalcones was screened for efflux pump inhibitory (EPI) activity against NorA mediated ethidium bromide efflux. Five of the chalcones (5-7, 9, and 10) were active and two chalcones (9 and 10) were equipotent to reserpine with IC(50)-values of 9.0 and 7.7 μM, respectively. Twenty chalcones were subsequently proved to be inhibitors of the NorA efflux pump in everted membrane vesicles. Compounds 5, 7, and 9 synergistically increased the effect of ciprofloxacin on Staphylococcus aureus. Our results suggest that chalcones might be developed into drugs for overcoming multidrug resistance based on efflux transporters of microorganisms.
Inhibition of norA-mediated ethidium bromide efflux in methicillin-resistant Staphylococcus aureus SA-1199B at 20 ug/ml by spectrofluorometric analysis
|
Staphylococcus aureus
|
85.1
%
|
|
Journal : Bioorg. Med. Chem.
Title : Chalcone inhibitors of the NorA efflux pump in Staphylococcus aureus whole cells and enriched everted membrane vesicles.
Year : 2012
Volume : 20
Issue : 14
First Page : 4514
Last Page : 4521
Authors : Holler JG, Slotved HC, Mølgaard P, Olsen CE, Christensen SB.
Abstract : A library of 117 chalcones was screened for efflux pump inhibitory (EPI) activity against NorA mediated ethidium bromide efflux. Five of the chalcones (5-7, 9, and 10) were active and two chalcones (9 and 10) were equipotent to reserpine with IC(50)-values of 9.0 and 7.7 μM, respectively. Twenty chalcones were subsequently proved to be inhibitors of the NorA efflux pump in everted membrane vesicles. Compounds 5, 7, and 9 synergistically increased the effect of ciprofloxacin on Staphylococcus aureus. Our results suggest that chalcones might be developed into drugs for overcoming multidrug resistance based on efflux transporters of microorganisms.
Inhibition of electric eel AChE at 2 mg/ml by Ellman's method
|
Electrophorus electricus
|
5.06
%
|
|
Journal : Bioorg. Med. Chem.
Title : Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Year : 2012
Volume : 20
Issue : 22
First Page : 6669
Last Page : 6679
Authors : Brunhofer G, Fallarero A, Karlsson D, Batista-Gonzalez A, Shinde P, Gopi Mohan C, Vuorela P.
Abstract : The presented project started by screening a library consisting of natural and natural based compounds for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. Active compounds were chemically clustered into groups and further tested on the human cholinesterases isoforms. The aim of the presented study was to identify compounds that could be used as leads to target two key mechanisms associated with the AD's pathogenesis simultaneously: cholinergic depletion and beta amyloid (Aβ) aggregation. Berberin, palmatine and chelerythrine, chemically clustered in the so-called isoquinoline group, showed promising cholinesterase inhibitory activity and were therefore further investigated. Moreover, the compounds demonstrated moderate to good inhibition of Aβ aggregation as well as the ability to disaggregate already preformed Aβ aggregates in an experimental set-up using HFIP as promotor of Aβ aggregates. Analysis of the kinetic mechanism of the AChE inhibition revealed chelerythrine as a mixed inhibitor. Using molecular docking studies, it was further proven that chelerythrine binds on both the catalytic site and the peripheral anionic site (PAS) of the AChE. In view of this, we went on to investigate its effect on inhibiting Aβ aggregation stimulated by AChE. Chelerythrine showed inhibition of fibril formation in the same range as propidium iodide. This approach enabled for the first time to identify a cholinesterase inhibitor of natural origin-chelerythrine-acting on AChE and BChE with a dual ability to inhibit Aβ aggregation as well as to disaggregate preformed Aβ aggregates. This compound could be an excellent starting point paving the way to develop more successful anti-AD drugs.
Inhibition of horse BChE at 2 mg/ml by Ellman's method
|
Equus caballus
|
15.34
%
|
|
Journal : Bioorg. Med. Chem.
Title : Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Year : 2012
Volume : 20
Issue : 22
First Page : 6669
Last Page : 6679
Authors : Brunhofer G, Fallarero A, Karlsson D, Batista-Gonzalez A, Shinde P, Gopi Mohan C, Vuorela P.
Abstract : The presented project started by screening a library consisting of natural and natural based compounds for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. Active compounds were chemically clustered into groups and further tested on the human cholinesterases isoforms. The aim of the presented study was to identify compounds that could be used as leads to target two key mechanisms associated with the AD's pathogenesis simultaneously: cholinergic depletion and beta amyloid (Aβ) aggregation. Berberin, palmatine and chelerythrine, chemically clustered in the so-called isoquinoline group, showed promising cholinesterase inhibitory activity and were therefore further investigated. Moreover, the compounds demonstrated moderate to good inhibition of Aβ aggregation as well as the ability to disaggregate already preformed Aβ aggregates in an experimental set-up using HFIP as promotor of Aβ aggregates. Analysis of the kinetic mechanism of the AChE inhibition revealed chelerythrine as a mixed inhibitor. Using molecular docking studies, it was further proven that chelerythrine binds on both the catalytic site and the peripheral anionic site (PAS) of the AChE. In view of this, we went on to investigate its effect on inhibiting Aβ aggregation stimulated by AChE. Chelerythrine showed inhibition of fibril formation in the same range as propidium iodide. This approach enabled for the first time to identify a cholinesterase inhibitor of natural origin-chelerythrine-acting on AChE and BChE with a dual ability to inhibit Aβ aggregation as well as to disaggregate preformed Aβ aggregates. This compound could be an excellent starting point paving the way to develop more successful anti-AD drugs.
Inhibition of human liver OATP1B1 expressed in HEK293 Flp-In cells assessed as reduction in E17-betaG uptake at 20 uM by scintillation counting
|
Homo sapiens
|
67.2
%
|
|
Journal : J. Med. Chem.
Title : Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Year : 2012
Volume : 55
Issue : 10
First Page : 4740
Last Page : 4763
Authors : Karlgren M, Vildhede A, Norinder U, Wisniewski JR, Kimoto E, Lai Y, Haglund U, Artursson P.
Abstract : The hepatic organic anion transporting polypeptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drug-drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors.
Inhibition of human liver OATP1B3 expressed in HEK293 Flp-In cells assessed as reduction in [3H]E17-betaG uptake at 20 uM incubated for 5 mins by scintillation counting
|
Homo sapiens
|
25.4
%
|
|
Journal : J. Med. Chem.
Title : Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Year : 2012
Volume : 55
Issue : 10
First Page : 4740
Last Page : 4763
Authors : Karlgren M, Vildhede A, Norinder U, Wisniewski JR, Kimoto E, Lai Y, Haglund U, Artursson P.
Abstract : The hepatic organic anion transporting polypeptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drug-drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors.
Inhibition of human liver OATP2B1 expressed in HEK293 Flp-In cells assessed as reduction in [3H]E3S uptake at 20 uM incubated for 5 mins by scintillation counting
|
Homo sapiens
|
72.3
%
|
|
Journal : J. Med. Chem.
Title : Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Year : 2012
Volume : 55
Issue : 10
First Page : 4740
Last Page : 4763
Authors : Karlgren M, Vildhede A, Norinder U, Wisniewski JR, Kimoto E, Lai Y, Haglund U, Artursson P.
Abstract : The hepatic organic anion transporting polypeptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drug-drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors.
Inhibition of NorA in Staphylococcus aureus 1199B harboring grlA A116E mutant assessed as inhibition of ethidium bromide efflux at 50 uM measured for 5 mins by fluorometric analysis relative to control
|
Staphylococcus aureus
|
82.0
%
|
|
Journal : J. Med. Chem.
Title : Re-evolution of the 2-phenylquinolines: ligand-based design, synthesis, and biological evaluation of a potent new class of Staphylococcus aureus NorA efflux pump inhibitors to combat antimicrobial resistance.
Year : 2013
Volume : 56
Issue : 12
First Page : 4975
Last Page : 4989
Authors : Sabatini S, Gosetto F, Iraci N, Barreca ML, Massari S, Sancineto L, Manfroni G, Tabarrini O, Dimovska M, Kaatz GW, Cecchetti V.
Abstract : Overexpression of efflux pumps is an important mechanism by which bacteria evade the effects of antimicrobial agents that are substrates. NorA is a Staphylococcus aureus efflux pump that confers reduced susceptibility to many structurally unrelated agents, including fluoroquinolones, biocides, and dyes, resulting in a multidrug resistant (MDR) phenotype. In this work, a series of 2-phenylquinoline derivatives was designed by means of ligand-based pharmacophore modeling in an attempt to identify improved S. aureus NorA efflux pump inhibitors (EPIs). Most of the 2-phenylquinoline derivatives displayed potent EPI activity against the norA overexpressing strain SA-1199B. The antibacterial activity of ciprofloxacin, when used in combination with some of the synthesized compounds, was completely restored in SA-1199B and SA-K2378, a strain overexpressing norA from a multicopy plasmid. Compounds 3m and 3q also showed potent synergistic activity with the ethidium bromide dye in a strain overexpressing the MepA MDR efflux pump.
Inhibition of NorA efflux pump in Staphylococcus aureus SA-1199B assessed as inhibition of EtBr efflux at 50 uM
|
Staphylococcus aureus
|
85.0
%
|
|
Journal : MedChemComm
Title : Searching for innovative quinolone-like scaffolds: synthesis and biological evaluation of 2,1-benzothiazine 2,2-dioxide derivatives
Year : 2012
Volume : 3
Issue : 9
First Page : 1092
Last Page : 1097
Authors : Pieroni M, Sabatini S, Massari S, Kaatz GW, Cecchetti V, Tabarrini O
Cytotoxicity against human MCF7 cells assessed as growth inhibition after 72 hrs by SRB assay
|
Homo sapiens
|
0.037
ug.mL-1
|
|
Journal : J. Nat. Prod.
Title : Jalapinoside, a macrocyclic bisdesmoside from the resin glycosides of Ipomea purga, as a modulator of multidrug resistance in human cancer cells.
Year : 2015
Volume : 78
Issue : 1
First Page : 168
Last Page : 172
Authors : Bautista E, Fragoso-Serrano M, Pereda-Miranda R.
Abstract : The first macrocyclic bisdesmoside resin glycoside, jalapinoside (4), was purified by preparative-scale recycling HPLC from the MeOH-soluble extracts of Ipomoea purga roots, the officinal jalap. Purgic acid C (3), a new glycosidic acid of ipurolic acid, was identified as 3-O-β-d-quinovopyranoside, 11-O-β-d-quinovopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→3)-O-[β-d-fucopyranosyl-(1→4)]-O-α-l-rhamnopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→2)-O-β-d-quinovopyranoside (3S,11S)-dihydroxytetradecanoic acid. The acylating residues of this core were acetic, (+)-(2S)-methylbutanoic, and dodecanoic acids. The site of lactonization was defined as C-3 of the second saccharide moiety. Reversal of multidrug resistance by this noncytotoxic compound was evaluated in vinblastine-resistant human breast carcinoma cells.
Cytotoxicity against human MCF7 cells assessed as growth inhibition after 72 hrs by SRB assay in presence of vinblastine
|
Homo sapiens
|
0.31
ug.mL-1
|
|
Journal : J. Nat. Prod.
Title : Jalapinoside, a macrocyclic bisdesmoside from the resin glycosides of Ipomea purga, as a modulator of multidrug resistance in human cancer cells.
Year : 2015
Volume : 78
Issue : 1
First Page : 168
Last Page : 172
Authors : Bautista E, Fragoso-Serrano M, Pereda-Miranda R.
Abstract : The first macrocyclic bisdesmoside resin glycoside, jalapinoside (4), was purified by preparative-scale recycling HPLC from the MeOH-soluble extracts of Ipomoea purga roots, the officinal jalap. Purgic acid C (3), a new glycosidic acid of ipurolic acid, was identified as 3-O-β-d-quinovopyranoside, 11-O-β-d-quinovopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→3)-O-[β-d-fucopyranosyl-(1→4)]-O-α-l-rhamnopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→2)-O-β-d-quinovopyranoside (3S,11S)-dihydroxytetradecanoic acid. The acylating residues of this core were acetic, (+)-(2S)-methylbutanoic, and dodecanoic acids. The site of lactonization was defined as C-3 of the second saccharide moiety. Reversal of multidrug resistance by this noncytotoxic compound was evaluated in vinblastine-resistant human breast carcinoma cells.
Cytotoxicity against vinblastin-sensitive human MCF7 cells assessed as growth inhibition after 72 hrs by SRB assay
|
Homo sapiens
|
0.003
ug.mL-1
|
|
Journal : J. Nat. Prod.
Title : Jalapinoside, a macrocyclic bisdesmoside from the resin glycosides of Ipomea purga, as a modulator of multidrug resistance in human cancer cells.
Year : 2015
Volume : 78
Issue : 1
First Page : 168
Last Page : 172
Authors : Bautista E, Fragoso-Serrano M, Pereda-Miranda R.
Abstract : The first macrocyclic bisdesmoside resin glycoside, jalapinoside (4), was purified by preparative-scale recycling HPLC from the MeOH-soluble extracts of Ipomoea purga roots, the officinal jalap. Purgic acid C (3), a new glycosidic acid of ipurolic acid, was identified as 3-O-β-d-quinovopyranoside, 11-O-β-d-quinovopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→3)-O-[β-d-fucopyranosyl-(1→4)]-O-α-l-rhamnopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→2)-O-β-d-quinovopyranoside (3S,11S)-dihydroxytetradecanoic acid. The acylating residues of this core were acetic, (+)-(2S)-methylbutanoic, and dodecanoic acids. The site of lactonization was defined as C-3 of the second saccharide moiety. Reversal of multidrug resistance by this noncytotoxic compound was evaluated in vinblastine-resistant human breast carcinoma cells.
Inhibition of NorA in fluoroquinolone-resistant Staphylococcus aureus 1199B assessed as increase in ethidium bromide uptake at 5 to 20 ug/ml after 20 mins by fluorimetry
|
Staphylococcus aureus
|
73.0
%
|
|
Journal : Eur. J. Med. Chem.
Title : Boronic species as promising inhibitors of the Staphylococcus aureus NorA efflux pump: study of 6-substituted pyridine-3-boronic acid derivatives.
Year : 2015
Volume : 95
First Page : 185
Last Page : 198
Authors : Fontaine F, Héquet A, Voisin-Chiret AS, Bouillon A, Lesnard A, Cresteil T, Jolivalt C, Rault S.
Abstract : In response to the extensive use of antibiotics, bacteria have evolved numerous mechanisms of defense against antimicrobial agents. Among them, extrusion of the antimicrobial agents outside the bacterial cell through efflux pumps is a major cause of concern. At first limited to one or few structurally-related antibiotics, bacterial resistance have then progressed towards cross-resistance between different classes of antibiotics, leading to multidrug-resistant microorganisms. Emergence of these pathogens requires development of novel therapeutic strategies and inhibition of efflux pumps appears to be a promising strategy that could restore the potency of existing antibiotics. NorA is the most studied chromosomal efflux pump of Staphylococcus aureus; it is known to be implied in resistance of Methicillin-resistant S. aureus (MRSA) strains against a wide range of unrelated substrates, including hydrophilic fluoroquinolones. Starting from 6-benzyloxypyridine-3-boronic acid I that we previously identified as a potential inhibitor of the NorA efflux pump against the NorA-overexpressing S. aureus 1199B strain (SA1199B), we describe here the synthesis and biological evaluation of a series of 6-(aryl)alkoxypyridine-3-boronic acids. 6-(3-Phenylpropoxy)pyridine-3-boronic acid 3i and 6-(4-phenylbutoxy)pyridine-3-boronic acid 3j were found to potentiate ciprofloxacin activity by a 4-fold increase compared to the parent compound I. In addition, it has been shown that both compounds promote Ethidium Bromide (EtBr) accumulation in SA1199B, thus corroborating their potential mode of action as NorA inhibitors.
Inhibition of NorA in Staphylococcus aureus SA-1199B expressing GrlA A116E mutant assessed as reduction in EtBr efflux at 50 uM incubated for 5 mins by fluorescence based assay
|
Staphylococcus aureus
|
84.8
%
|
|
Journal : J Med Chem
Title : 2-Phenylquinoline S. aureus NorA Efflux Pump Inhibitors: Evaluation of the Importance of Methoxy Group Introduction.
Year : 2018
Volume : 61
Issue : 17
First Page : 7827
Last Page : 7848
Authors : Felicetti T, Cannalire R, Pietrella D, Latacz G, Lubelska A, Manfroni G, Barreca ML, Massari S, Tabarrini O, Kieć-Kononowicz K, Schindler BD, Kaatz GW, Cecchetti V, Sabatini S.
Abstract : Antimicrobial resistance (AMR) represents a hot topic in drug discovery. Besides the identification of new antibiotics, the use of nonantibiotic molecules to block resistance mechanisms is a powerful alternative. Bacterial efflux pumps exert an early step in AMR development by allowing bacteria to grow at subinhibitorial drug concentrations. Thus, efflux pump inhibitors (EPIs) offer a great opportunity to fight AMR. Given our experience in developing Staphylococcus aureus NorA EPIs, in this work, starting from the 2-phenylquinoline hit 1, we planned the introduction of methoxy groups on the basis of their presence in known NorA EPIs. Among the 35 different synthesized derivatives, compounds 3b and 7d exhibited the best NorA inhibition activity by restoring at very low concentrations ciprofloxacin MICs against resistant S. aureus strains. Interestingly, both compounds displayed EPI activities at nontoxic concentrations for human cells as well as highlighted promising results by preliminary pharmacokinetic studies.
Inhibition of Staphylococcus aureus SA-1199B NorA assessed as reduction in EtBr efflux at 50 uM measured over 5 mins by fluorescence assay relative to control
|
Staphylococcus aureus
|
82.0
%
|
|
Journal : Eur J Med Chem
Title : Studies on 2-phenylquinoline Staphylococcus aureus NorA efflux pump inhibitors: New insights on the C-6 position.
Year : 2018
Volume : 155
First Page : 428
Last Page : 433
Authors : Felicetti T, Cannalire R, Nizi MG, Tabarrini O, Massari S, Barreca ML, Manfroni G, Schindler BD, Cecchetti V, Kaatz GW, Sabatini S.
Abstract : The alarming and rapid spread of antimicrobial resistance among bacteria represents a high risk for global health. Targeting factors involved in resistance to restore the activity of failing antibiotics is a promising strategy to overcome this urgent medical need. Efflux pump inhibitors are able to increase antibiotic concentrations in bacteria, thus they can be considered true antimicrobial resistance breakers. In this work, continuing our studies on inhibitors of the Staphylococcus aureus NorA pump, we designed, synthesized and biologically evaluated novel 2-phenylquinoline derivatives starting from our hits 1 and 2. Two of the synthesized compounds (6 and 7) bearing a C-6 benzyloxy group showed the best NorA inhibition activity, thereby providing an excellent starting point to direct future chemical optimizations.
Displacement of [3H]reserpine from human VMAT2 expressed in HEK293 cell membranes incubated for 60 mins by scintillation counting method
|
Homo sapiens
|
5.26
nM
|
|
Journal : J Med Chem
Title : Synthesis and Discovery of Arylpiperidinylquinazolines: New Inhibitors of the Vesicular Monoamine Transporter.
Year : 2018
Volume : 61
Issue : 20
First Page : 9121
Last Page : 9131
Authors : Provencher BA, Eshleman AJ, Johnson RA, Shi X, Kryatova O, Nelson J, Tian J, Gonzalez M, Meltzer PC, Janowsky A.
Abstract : Methamphetamine, a human vesicular monoamine transporter 2 (VMAT2) substrate, releases dopamine, serotonin, and norepinephrine from vesicles into the cytosol of presynaptic neurons and induces reverse transport by the monoamine transporters to increase extracellular neurotransmitters. Currently available radioligands for VMAT2 have considerable liabilities: The binding of [3H]dihydrotetrabenazine ([3H]DHTB) to a site on VMAT2 is not dependent on ATP, and [3H]reserpine binds almost irreversibly to VMAT2. Herein we demonstrate that several arylpiperidinylquinazolines (APQs) are potent inhibitors of [3H]reserpine binding at recombinant human VMAT2 expressed in HEK-293 cells. These compounds are biodiastereoselective and bioenantioselective. The lead radiolabeled APQ is unique because it binds reversibly to VMAT2 but does not bind the [3H]DHTB binding site. Furthermore, experimentation shows that several novel APQ ligands have high potency for inhibition of uptake by both HEK-VMAT2 cells and mouse striatal vesicles and may be useful tools for characterizing drug-induced effects on human VMAT2 expression and function.
Displacement of [3H]DHTB from human VMAT2 expressed in HEK293 cell membranes incubated for 90 mins by microbeta scintillation counting method
|
Homo sapiens
|
630.0
nM
|
|
Journal : J Med Chem
Title : Synthesis and Discovery of Arylpiperidinylquinazolines: New Inhibitors of the Vesicular Monoamine Transporter.
Year : 2018
Volume : 61
Issue : 20
First Page : 9121
Last Page : 9131
Authors : Provencher BA, Eshleman AJ, Johnson RA, Shi X, Kryatova O, Nelson J, Tian J, Gonzalez M, Meltzer PC, Janowsky A.
Abstract : Methamphetamine, a human vesicular monoamine transporter 2 (VMAT2) substrate, releases dopamine, serotonin, and norepinephrine from vesicles into the cytosol of presynaptic neurons and induces reverse transport by the monoamine transporters to increase extracellular neurotransmitters. Currently available radioligands for VMAT2 have considerable liabilities: The binding of [3H]dihydrotetrabenazine ([3H]DHTB) to a site on VMAT2 is not dependent on ATP, and [3H]reserpine binds almost irreversibly to VMAT2. Herein we demonstrate that several arylpiperidinylquinazolines (APQs) are potent inhibitors of [3H]reserpine binding at recombinant human VMAT2 expressed in HEK-293 cells. These compounds are biodiastereoselective and bioenantioselective. The lead radiolabeled APQ is unique because it binds reversibly to VMAT2 but does not bind the [3H]DHTB binding site. Furthermore, experimentation shows that several novel APQ ligands have high potency for inhibition of uptake by both HEK-VMAT2 cells and mouse striatal vesicles and may be useful tools for characterizing drug-induced effects on human VMAT2 expression and function.
Binding affinity to human VMAT2 expressed in HEK293 cell membranes by scintillation counting method based saturation binding assay
|
Homo sapiens
|
8.0
nM
|
|
Journal : J Med Chem
Title : Synthesis and Discovery of Arylpiperidinylquinazolines: New Inhibitors of the Vesicular Monoamine Transporter.
Year : 2018
Volume : 61
Issue : 20
First Page : 9121
Last Page : 9131
Authors : Provencher BA, Eshleman AJ, Johnson RA, Shi X, Kryatova O, Nelson J, Tian J, Gonzalez M, Meltzer PC, Janowsky A.
Abstract : Methamphetamine, a human vesicular monoamine transporter 2 (VMAT2) substrate, releases dopamine, serotonin, and norepinephrine from vesicles into the cytosol of presynaptic neurons and induces reverse transport by the monoamine transporters to increase extracellular neurotransmitters. Currently available radioligands for VMAT2 have considerable liabilities: The binding of [3H]dihydrotetrabenazine ([3H]DHTB) to a site on VMAT2 is not dependent on ATP, and [3H]reserpine binds almost irreversibly to VMAT2. Herein we demonstrate that several arylpiperidinylquinazolines (APQs) are potent inhibitors of [3H]reserpine binding at recombinant human VMAT2 expressed in HEK-293 cells. These compounds are biodiastereoselective and bioenantioselective. The lead radiolabeled APQ is unique because it binds reversibly to VMAT2 but does not bind the [3H]DHTB binding site. Furthermore, experimentation shows that several novel APQ ligands have high potency for inhibition of uptake by both HEK-VMAT2 cells and mouse striatal vesicles and may be useful tools for characterizing drug-induced effects on human VMAT2 expression and function.
Displacement of [3H](+)-syn-Ethyl 1-(2-(2,4-Dioxo-1,2-dihydroquinazolin-3(4H)-yl)ethyl)-4-(4-fluorophenyl)piperidine-3-carboxylate from human VMAT2 expressed in HEK293 cell membranes incubated for 60 mins by scintillation counting method
|
Homo sapiens
|
410.0
nM
|
|
Journal : J Med Chem
Title : Synthesis and Discovery of Arylpiperidinylquinazolines: New Inhibitors of the Vesicular Monoamine Transporter.
Year : 2018
Volume : 61
Issue : 20
First Page : 9121
Last Page : 9131
Authors : Provencher BA, Eshleman AJ, Johnson RA, Shi X, Kryatova O, Nelson J, Tian J, Gonzalez M, Meltzer PC, Janowsky A.
Abstract : Methamphetamine, a human vesicular monoamine transporter 2 (VMAT2) substrate, releases dopamine, serotonin, and norepinephrine from vesicles into the cytosol of presynaptic neurons and induces reverse transport by the monoamine transporters to increase extracellular neurotransmitters. Currently available radioligands for VMAT2 have considerable liabilities: The binding of [3H]dihydrotetrabenazine ([3H]DHTB) to a site on VMAT2 is not dependent on ATP, and [3H]reserpine binds almost irreversibly to VMAT2. Herein we demonstrate that several arylpiperidinylquinazolines (APQs) are potent inhibitors of [3H]reserpine binding at recombinant human VMAT2 expressed in HEK-293 cells. These compounds are biodiastereoselective and bioenantioselective. The lead radiolabeled APQ is unique because it binds reversibly to VMAT2 but does not bind the [3H]DHTB binding site. Furthermore, experimentation shows that several novel APQ ligands have high potency for inhibition of uptake by both HEK-VMAT2 cells and mouse striatal vesicles and may be useful tools for characterizing drug-induced effects on human VMAT2 expression and function.
Inhibition of human VMAT2 expressed in HEK293 cell membranes assessed as reduction in [3H[-5HT uptake pre-incubated for 10 mins before [3H[-5HT addition and measured after 6 mins
|
Homo sapiens
|
13.2
nM
|
|
Journal : J Med Chem
Title : Synthesis and Discovery of Arylpiperidinylquinazolines: New Inhibitors of the Vesicular Monoamine Transporter.
Year : 2018
Volume : 61
Issue : 20
First Page : 9121
Last Page : 9131
Authors : Provencher BA, Eshleman AJ, Johnson RA, Shi X, Kryatova O, Nelson J, Tian J, Gonzalez M, Meltzer PC, Janowsky A.
Abstract : Methamphetamine, a human vesicular monoamine transporter 2 (VMAT2) substrate, releases dopamine, serotonin, and norepinephrine from vesicles into the cytosol of presynaptic neurons and induces reverse transport by the monoamine transporters to increase extracellular neurotransmitters. Currently available radioligands for VMAT2 have considerable liabilities: The binding of [3H]dihydrotetrabenazine ([3H]DHTB) to a site on VMAT2 is not dependent on ATP, and [3H]reserpine binds almost irreversibly to VMAT2. Herein we demonstrate that several arylpiperidinylquinazolines (APQs) are potent inhibitors of [3H]reserpine binding at recombinant human VMAT2 expressed in HEK-293 cells. These compounds are biodiastereoselective and bioenantioselective. The lead radiolabeled APQ is unique because it binds reversibly to VMAT2 but does not bind the [3H]DHTB binding site. Furthermore, experimentation shows that several novel APQ ligands have high potency for inhibition of uptake by both HEK-VMAT2 cells and mouse striatal vesicles and may be useful tools for characterizing drug-induced effects on human VMAT2 expression and function.
Inhibition of VMAT2 in C57Bl/6J mouse striatal membranes assessed as reduction in [3H[-5HT uptake pre-incubated for 10 mins before [3H[-5HT addition and measured after 8 mins
|
Mus musculus
|
1.79
nM
|
|
Journal : J Med Chem
Title : Synthesis and Discovery of Arylpiperidinylquinazolines: New Inhibitors of the Vesicular Monoamine Transporter.
Year : 2018
Volume : 61
Issue : 20
First Page : 9121
Last Page : 9131
Authors : Provencher BA, Eshleman AJ, Johnson RA, Shi X, Kryatova O, Nelson J, Tian J, Gonzalez M, Meltzer PC, Janowsky A.
Abstract : Methamphetamine, a human vesicular monoamine transporter 2 (VMAT2) substrate, releases dopamine, serotonin, and norepinephrine from vesicles into the cytosol of presynaptic neurons and induces reverse transport by the monoamine transporters to increase extracellular neurotransmitters. Currently available radioligands for VMAT2 have considerable liabilities: The binding of [3H]dihydrotetrabenazine ([3H]DHTB) to a site on VMAT2 is not dependent on ATP, and [3H]reserpine binds almost irreversibly to VMAT2. Herein we demonstrate that several arylpiperidinylquinazolines (APQs) are potent inhibitors of [3H]reserpine binding at recombinant human VMAT2 expressed in HEK-293 cells. These compounds are biodiastereoselective and bioenantioselective. The lead radiolabeled APQ is unique because it binds reversibly to VMAT2 but does not bind the [3H]DHTB binding site. Furthermore, experimentation shows that several novel APQ ligands have high potency for inhibition of uptake by both HEK-VMAT2 cells and mouse striatal vesicles and may be useful tools for characterizing drug-induced effects on human VMAT2 expression and function.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of Caco-2 cells at 10 uM after 48 hours by high content imaging
|
Homo sapiens
|
64.21
%
|
|
Title : Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection
Year : 2020
Authors : Bernhard Ellinger, Denisa Bojkova, Andrea Zaliani, Jindrich Cinatl, Carsten Claussen, Sandra Westhaus, Jeanette Reinshagen, Maria Kuzikov, Markus Wolf, Gerd Geisslinger, Philip Gribbon, Sandra Ciesek
Abstract : To identify possible candidates for progression towards clinical studies against SARS-CoV-2, we screened a well-defined collection of 5632 compounds including 3488 compounds which have undergone clinical investigations (marketed drugs, phases 1 -3, and withdrawn) across 600 indications. Compounds were screened for their inhibition of viral induced cytotoxicity using the human epithelial colorectal adenocarcinoma cell line Caco-2 and a SARS-CoV-2 isolate. The primary screen of 5632 compounds gave 271 hits. A total of 64 compounds with IC50 <20 µM were identified, including 19 compounds with IC50 < 1 µM. Of this confirmed hit population, 90% have not yet been previously reported as active against SARS-CoV-2 in-vitro cell assays. Some 37 of the actives are launched drugs, 19 are in phases 1-3 and 10 pre-clinical. Several inhibitors were associated with modulation of host pathways including kinase signaling P53 activation, ubiquitin pathways and PDE activity modulation, with long chain acyl transferases were effective viral inhibitors.
Inhibition of NorA in Staphylococcus aureus 1199B assessed as reduction in ethidium bromide efflux at 50 uM measured over 5 mins interval for 30 mins by fluorescence assay relative to control
|
Staphylococcus aureus
|
83.06
%
|
|
Journal : Bioorg Med Chem
Title : Synthesis of amides from (E)-3-(1-chloro-3,4-dihydronaphthalen-2-yl)acrylic acid and substituted amino acid esters as NorA efflux pump inhibitors of Staphylococcus aureus.
Year : 2019
Volume : 27
Issue : 2
First Page : 343
Last Page : 353
Authors : Rath SK, Singh S, Kumar S, Wani NA, Rai R, Koul S, Khan IA, Sangwan PL.
Abstract : Inhibitors for NorA efflux pump of Staphylococcus aureus have attracted the attention of many researchers towards the discovery and development of novel efflux pump inhibitors (EPIs). In an attempt to find specific potent inhibitors of NorA efflux pump of S. aureus, a total of 15 amino acid conjugates of 3-(1-chloro-3,4-dihydronaphthalen-2-yl)acrylic acid (4-18) were synthesized using a simple convenient synthetic approach and bioevaluated against NorA efflux pump. Two compounds 7 and 8 (each having MEC of 1.56 µg/mL) were found to restore the activity of ciprofloxacin through reduction of the MIC elucidated by comparing the ethidium bromide efflux in dose dependent manner in addition to ethidium bromide efflux inhibition and accumulation study using NorA overexpressing strain SA-1199B. Most potent compounds among these were able to restore the antibacterial activity of ciprofloxacin completely against SA-1199B. Structure activity relationship (SAR) studies and docking study of potent compounds 7 and 8 could elucidate the structural requirements necessary for interaction with the NorA efflux pumps. On the whole, compounds 7 and 8 have ability to reverse the NorA efflux mediated resistance and could be further optimized for development of potent efflux pump inhibitors.
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
16.08
%
|
|
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
21.65
%
|
|
Title : Identification of inhibitors of SARS-Cov2 M-Pro enzymatic activity using a small molecule repurposing screen
Year : 2020
Authors : Maria Kuzikov, Elisa Costanzi, Jeanette Reinshagen, Francesca Esposito, Laura Vangeel, Markus Wolf, Bernhard Ellinger, Carsten Claussen, Gerd Geisslinger, Angela Corona, Daniela Iaconis, Carmine Talarico, Candida Manelfi, Rolando Cannalire, Giulia Rossetti, Jonas Gossen, Simone Albani, Francesco Musiani, Katja Herzog, Yang Ye, Barbara Giabbai, Nicola Demitri, Dirk Jochmans, Steven De Jonghe, Jasper Rymenants, Vincenzo Summa, Enzo Tramontano, Andrea R. Beccari, Pieter Leyssen, Paola Storici, Johan Neyts, Philip Gribbon, and Andrea Zaliani
Abstract : Compound repurposing is an important strategy being pursued in the identification of effective treatment against the SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (M-Pro), also termed 3CL-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyprotein into 11 non-structural proteins. We report the results of a screening campaign involving ca 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and chemicals regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, but we have also identified 68 compounds with IC50 lower than 1 uM and 127 compounds with IC50 lower than 5 uM. Profiling showed 67% of confirmed hits were selective (> 5 fold) against other Cys- and Ser- proteases (Chymotrypsin and Cathepsin-L) and MERS 3CL-Pro. Selected compounds were also analysed in their binding characteristics.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
2.65
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
0.79
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
0.79
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
2.65
%
|
|
Title : Cytopathic SARS-Cov2 screening on VERO-E6 cells in a large repurposing effort
Year : 2020
Authors : Andrea Zaliani, Laura Vangeel, Jeanette Reinshagen, Daniela Iaconis, Maria Kuzikov, Oliver Keminer, Markus Wolf, Bernhard Ellinger, Francesca Esposito, Angela Corona, Enzo Tramontano, Candida Manelfi, Katja Herzog, Dirk Jochmans, Steven De Jonghe, Winston Chiu, Thibault Francken, Joost Schepers, Caroline Collard, Kayvan Abbasi, Carsten Claussen , Vincenzo Summa, Andrea R. Beccari, Johan Neyts, Philip Gribbon and Pieter Leyssen
Abstract : Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.