Inhibition of wild-type B-Raf
|
None
|
28.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Small molecule inhibitors of BRAF in clinical trials.
Year : 2012
Volume : 22
Issue : 2
First Page : 789
Last Page : 792
Authors : Zambon A, Niculescu-Duvaz I, Niculescu-Duvaz D, Marais R, Springer CJ.
Abstract : Over the last few years, BRAF has emerged as a validated target in melanoma. This review summarises recent advances in the development of BRAF inhibitors, focussing on agents that have been assessed clinically.
Inhibition of B-Raf V600E mutant
|
Homo sapiens
|
19.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Small molecule inhibitors of BRAF in clinical trials.
Year : 2012
Volume : 22
Issue : 2
First Page : 789
Last Page : 792
Authors : Zambon A, Niculescu-Duvaz I, Niculescu-Duvaz D, Marais R, Springer CJ.
Abstract : Over the last few years, BRAF has emerged as a validated target in melanoma. This review summarises recent advances in the development of BRAF inhibitors, focussing on agents that have been assessed clinically.
Inhibition of human recombinant soluble epoxide hydrolase assessed as cyano(6-methoxy-naphthalen-2-yl)methyl trans-[(3-phenyloxyran-2-yl)methyl] carbonate conversion to 6-methoxy-2-naphthaldehyde preincubated for 5 mins prior to substrate addition by fluorescence assay
|
Homo sapiens
|
0.5
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Synthesis and biological evaluation of sorafenib- and regorafenib-like sEH inhibitors.
Year : 2013
Volume : 23
Issue : 13
First Page : 3732
Last Page : 3737
Authors : Hwang SH, Wecksler AT, Zhang G, Morisseau C, Nguyen LV, Fu SH, Hammock BD.
Abstract : To reduce the pro-angiogenic effects of sEH inhibition, a structure-activity relationship (SAR) study was performed by incorporating structural features of the anti-angiogenic multi-kinase inhibitor sorafenib into soluble epoxide hydrolase (sEH) inhibitors. The structural modifications of this series of molecules enabled the altering of selectivity towards the pro-angiogenic kinases C-RAF and vascular endothelial growth factor receptor-2 (VEGFR-2), while retaining their sEH inhibition. As a result, sEH inhibitors with greater potency against C-RAF and VEGFR-2 were obtained. Compound 4 (t-CUPM) possesses inhibition potency higher than sorafenib towards sEH but similar against C-RAF and VEGFR-2. Compound 7 (t-CUCB) selectively inhibits sEH, while inhibiting HUVEC cell proliferation, a potential anti-angiogenic property, without liver cancer cell cytotoxicity. The data presented suggest a potential rational approach to control the angiogenic responses stemming from sEH inhibition.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
753.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
739.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
719.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
358.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
421.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
7.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
832.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
562.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
616.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
465.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
705.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
682.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
126.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
767.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
368.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Kinobeads (epsilon), multiple immobilized ATP-competitive broad spectrum kinase inhibitors, used to assess residual binding of ~300 proteins simultaneously from cell lysate in the presence of a compound. Quantitative readout performed by mass spectrometry.
|
Homo sapiens
|
274.0
nM
|
|
Journal : Science
Title : The target landscape of clinical kinase drugs.
Year : 2017
Volume : 358
Issue : 6367
Authors : Klaeger S, Heinzlmeir S and Wilhelm M et al
Abstract : Kinase inhibitors are important cancer therapeutics. Polypharmacology is commonly observed, requiring thorough target deconvolution to understand drug mechanism of action. Using chemical proteomics, we analyzed the target spectrum of 243 clinically evaluated kinase drugs. The data revealed previously unknown targets for established drugs, offered a perspective on the "druggable" kinome, highlighted (non)kinase off-targets, and suggested potential therapeutic applications. Integration of phosphoproteomic data refined drug-affected pathways, identified response markers, and strengthened rationale for combination treatments. We exemplify translational value by discovering SIK2 (salt-inducible kinase 2) inhibitors that modulate cytokine production in primary cells, by identifying drugs against the lung cancer survival marker MELK (maternal embryonic leucine zipper kinase), and by repurposing cabozantinib to treat FLT3-ITD-positive acute myeloid leukemia. This resource, available via the ProteomicsDB database, should facilitate basic, clinical, and drug discovery research and aid clinical decision-making.
Inhibition of wild type KIT (unknown origin) using biotinylated poly-Glu-Tyr as substrate preincubated for 30 mins followed by substrate addition in presence of ATP by TR-FRET assay
|
Homo sapiens
|
6.1
nM
|
|
Journal : J Med Chem
Title : Inhibitors to Overcome Secondary Mutations in the Stem Cell Factor Receptor KIT.
Year : 2017
Volume : 60
Issue : 21
First Page : 8801
Last Page : 8815
Authors : Kaitsiotou H, Keul M, Hardick J, Mühlenberg T, Ketzer J, Ehrt C, Krüll J, Medda F, Koch O, Giordanetto F, Bauer S, Rauh D.
Abstract : In modern cancer therapy, the use of small organic molecules against receptor tyrosine kinases (RTKs) has been shown to be a valuable strategy. The association of cancer cells with dysregulated signaling pathways linked to RTKs represents a key element in targeted cancer therapies. The tyrosine kinase mast/stem cell growth factor receptor KIT is an example of a clinically relevant RTK. KIT is targeted for cancer therapy in gastrointestinal stromal tumors (GISTs) and chronic myelogenous leukemia (CML). However, acquired resistance mutations within the catalytic domain decrease the efficacy of this strategy and are the most common cause of failed therapy. Here, we present the structure-based design and synthesis of novel type II kinase inhibitors to overcome these mutations in KIT. Biochemical and cellular studies revealed promising molecules for the inhibition of mutated KIT.
Inhibition of KIT D816H mutant (unknown origin) using biotinylated poly-Glu-Tyr as substrate preincubated for 30 mins followed by substrate addition in presence of ATP by TR-FRET assay
|
Homo sapiens
|
239.1
nM
|
|
Journal : J Med Chem
Title : Inhibitors to Overcome Secondary Mutations in the Stem Cell Factor Receptor KIT.
Year : 2017
Volume : 60
Issue : 21
First Page : 8801
Last Page : 8815
Authors : Kaitsiotou H, Keul M, Hardick J, Mühlenberg T, Ketzer J, Ehrt C, Krüll J, Medda F, Koch O, Giordanetto F, Bauer S, Rauh D.
Abstract : In modern cancer therapy, the use of small organic molecules against receptor tyrosine kinases (RTKs) has been shown to be a valuable strategy. The association of cancer cells with dysregulated signaling pathways linked to RTKs represents a key element in targeted cancer therapies. The tyrosine kinase mast/stem cell growth factor receptor KIT is an example of a clinically relevant RTK. KIT is targeted for cancer therapy in gastrointestinal stromal tumors (GISTs) and chronic myelogenous leukemia (CML). However, acquired resistance mutations within the catalytic domain decrease the efficacy of this strategy and are the most common cause of failed therapy. Here, we present the structure-based design and synthesis of novel type II kinase inhibitors to overcome these mutations in KIT. Biochemical and cellular studies revealed promising molecules for the inhibition of mutated KIT.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of Caco-2 cells at 10 uM after 48 hours by high content imaging
|
Homo sapiens
|
91.47
%
|
|
Title : Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection
Year : 2020
Authors : Bernhard Ellinger, Denisa Bojkova, Andrea Zaliani, Jindrich Cinatl, Carsten Claussen, Sandra Westhaus, Jeanette Reinshagen, Maria Kuzikov, Markus Wolf, Gerd Geisslinger, Philip Gribbon, Sandra Ciesek
Abstract : To identify possible candidates for progression towards clinical studies against SARS-CoV-2, we screened a well-defined collection of 5632 compounds including 3488 compounds which have undergone clinical investigations (marketed drugs, phases 1 -3, and withdrawn) across 600 indications. Compounds were screened for their inhibition of viral induced cytotoxicity using the human epithelial colorectal adenocarcinoma cell line Caco-2 and a SARS-CoV-2 isolate. The primary screen of 5632 compounds gave 271 hits. A total of 64 compounds with IC50 <20 µM were identified, including 19 compounds with IC50 < 1 µM. Of this confirmed hit population, 90% have not yet been previously reported as active against SARS-CoV-2 in-vitro cell assays. Some 37 of the actives are launched drugs, 19 are in phases 1-3 and 10 pre-clinical. Several inhibitors were associated with modulation of host pathways including kinase signaling P53 activation, ubiquitin pathways and PDE activity modulation, with long chain acyl transferases were effective viral inhibitors.
Inhibition of VEGFR2 (unknown origin)
|
Homo sapiens
|
4.2
nM
|
|
Journal : Eur J Med Chem
Title : Evolution in medicinal chemistry of sorafenib derivatives for hepatocellular carcinoma.
Year : 2019
Volume : 179
First Page : 916
Last Page : 935
Authors : Chen F, Fang Y, Zhao R, Le J, Zhang B, Huang R, Chen Z, Shao J.
Abstract : Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Traditional chemotherapy drugs are hard to reach a satisfactory therapeutic effect since advanced HCC is highly chemo-resistant. Sorafenib is an oral multikinase inhibitor that can suppress tumor cell proliferation, angiogenesis and induce cancer cell apoptosis. However, the poor solubility, rapid metabolism and low bioavailability of sorafenib greatly restricted its further clinical application. During the past decade, numerous sorafenib derivatives have been designed and synthesized to overcome its disadvantages and improve its clinical performance. This article focuses on the therapeutic effects and mechanisms of various sorafenib derivatives with modifications on the N-methylpicolinamide group, urea group, central aromatic ring or others. More importantly, this review summarizes the current status of the structure-activity relationship (SAR) of reported sorafenib derivatives, which can provide some detailed information of future directions for further structural modifications of sorafenib to discovery new anti-tumor drugs with improved clinical performance.
Inhibition of VEGFR1 (unknown origin)
|
Homo sapiens
|
13.0
nM
|
|
Journal : Eur J Med Chem
Title : Evolution in medicinal chemistry of sorafenib derivatives for hepatocellular carcinoma.
Year : 2019
Volume : 179
First Page : 916
Last Page : 935
Authors : Chen F, Fang Y, Zhao R, Le J, Zhang B, Huang R, Chen Z, Shao J.
Abstract : Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Traditional chemotherapy drugs are hard to reach a satisfactory therapeutic effect since advanced HCC is highly chemo-resistant. Sorafenib is an oral multikinase inhibitor that can suppress tumor cell proliferation, angiogenesis and induce cancer cell apoptosis. However, the poor solubility, rapid metabolism and low bioavailability of sorafenib greatly restricted its further clinical application. During the past decade, numerous sorafenib derivatives have been designed and synthesized to overcome its disadvantages and improve its clinical performance. This article focuses on the therapeutic effects and mechanisms of various sorafenib derivatives with modifications on the N-methylpicolinamide group, urea group, central aromatic ring or others. More importantly, this review summarizes the current status of the structure-activity relationship (SAR) of reported sorafenib derivatives, which can provide some detailed information of future directions for further structural modifications of sorafenib to discovery new anti-tumor drugs with improved clinical performance.
Inhibition of UGT1A in rat hepatocytes assessed as decrease in bilirubin diglucuronide level at 10 uM preincubated for 2 mins followed by UDPGA addition measured after 45 mins by HPLC analysis relative to control
|
Rattus norvegicus
|
96.0
%
|
|
Journal : MedChemComm
Title : Efforts in redesigning the antileukemic drug 6-thiopurine: decreasing toxic side effects while maintaining efficacy.
Year : 2019
Volume : 10
Issue : 1
First Page : 169
Last Page : 179
Authors : Torres Hernandez AX, Weeramange CJ, Desman P, Fatino A, Haney O, Rafferty RJ.
Abstract : 6-Thiopurine (6TP) is a currently prescribed drug in the treatment of diseases ranging from Crohn's disease to acute lymphocytic leukemia. While its potent mode of action is through incorporation into DNA as a thiol mimic of deoxyguanosine, severe toxicities are associated with its administration which hinder the potential therapeutic application. We have previously reported <i>in vitro</i> that the oxidative metabolites of 6TP, specifically 6-thiouric acid (6TU, <i>K</i> <sub>i</sub> 7 μM), are potent inhibitors of UDP-glucose dehydrogenase (UDPGDH), an enzyme that is responsible for the formation of UDP-glucuronic acid (UDPGA), an essential substrate that is used in detoxification processes in the liver. An <i>in vivo</i> investigation was undertaken to probe if 6TU inhibits UDPGDH in rat hepatocytes, and it was observed that 6TU does greatly suppress the conjugation of bilirubin with UDPGA. The failed excretion of bilirubin is linked to a majority of the reported toxicities associated with 6TP administration. Efforts were undertaken for the construction of 6TP analogs, substituted at the C8 position, to reduce inhibition of UDPGDH while retaining therapeutic efficacy. Three new 6TP analogs bearing a halogen (Br, Cl, and F) at the C8 position have been achieved over five-synthetic steps in overall yields of 16 to 32%. Each of these analogs were shown to have reduced inhibition towards UDPGDH, with <i>K</i> <sub>i</sub> values of 192, 163, 215 μM, respectively. In addition, the bromine, chlorine, and fluorine analogs were shown to possess cytotoxicity towards the REH cell line (acute lymphocytic leukemia) having IC<sub>50</sub> values of 9.54 μM (±0.97), 3.95 μM (±1.94), and 4.71 μM (±1.40), respectively. These three new 6TP analogs represent the first steps in the redesign of this potent anticancer agent into a better drug that possesses reduced toxic side effects while retaining therapeutic potency.
Inhibition of UGT1A in rat hepatocytes assessed as decrease in bilirubin monoglucuronide level at 10 uM preincubated for 2 mins followed by UDPGA addition measured after 45 mins by HPLC analysis relative to control
|
Rattus norvegicus
|
89.0
%
|
|
Journal : MedChemComm
Title : Efforts in redesigning the antileukemic drug 6-thiopurine: decreasing toxic side effects while maintaining efficacy.
Year : 2019
Volume : 10
Issue : 1
First Page : 169
Last Page : 179
Authors : Torres Hernandez AX, Weeramange CJ, Desman P, Fatino A, Haney O, Rafferty RJ.
Abstract : 6-Thiopurine (6TP) is a currently prescribed drug in the treatment of diseases ranging from Crohn's disease to acute lymphocytic leukemia. While its potent mode of action is through incorporation into DNA as a thiol mimic of deoxyguanosine, severe toxicities are associated with its administration which hinder the potential therapeutic application. We have previously reported <i>in vitro</i> that the oxidative metabolites of 6TP, specifically 6-thiouric acid (6TU, <i>K</i> <sub>i</sub> 7 μM), are potent inhibitors of UDP-glucose dehydrogenase (UDPGDH), an enzyme that is responsible for the formation of UDP-glucuronic acid (UDPGA), an essential substrate that is used in detoxification processes in the liver. An <i>in vivo</i> investigation was undertaken to probe if 6TU inhibits UDPGDH in rat hepatocytes, and it was observed that 6TU does greatly suppress the conjugation of bilirubin with UDPGA. The failed excretion of bilirubin is linked to a majority of the reported toxicities associated with 6TP administration. Efforts were undertaken for the construction of 6TP analogs, substituted at the C8 position, to reduce inhibition of UDPGDH while retaining therapeutic efficacy. Three new 6TP analogs bearing a halogen (Br, Cl, and F) at the C8 position have been achieved over five-synthetic steps in overall yields of 16 to 32%. Each of these analogs were shown to have reduced inhibition towards UDPGDH, with <i>K</i> <sub>i</sub> values of 192, 163, 215 μM, respectively. In addition, the bromine, chlorine, and fluorine analogs were shown to possess cytotoxicity towards the REH cell line (acute lymphocytic leukemia) having IC<sub>50</sub> values of 9.54 μM (±0.97), 3.95 μM (±1.94), and 4.71 μM (±1.40), respectively. These three new 6TP analogs represent the first steps in the redesign of this potent anticancer agent into a better drug that possesses reduced toxic side effects while retaining therapeutic potency.
Inhibition of recombinant N-terminal 6x-His-tagged c-KIT (547 to 935 residues)/(694 to 753 residues deletion) (unknown origin) expressed in baculovirus infected Sf9 insect cells using poly (Glu,Tyr) 4:1 as substrate measured after 150 mins in presence of ATP by ADP-glo reagent based luminescence assay
|
Homo sapiens
|
116.0
nM
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of wild type recombinant GST-tagged FLT3 (Y567 to S993 residues) (unknown origin) expressed in baculovirus infected Sf9 insect cells using Her2 peptide as substrate measured after 4 hrs in presence of ATP by Kinase-Glo Plus reagent-based luminescence assay
|
Homo sapiens
|
82.0
nM
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT JM domain exon 11 V560G single mutant at 100 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
67.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT JM domain exon 11 V560G single mutant at 10 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
24.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT ATP binding domain exon 13 V654A single mutant at 100 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
14.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT ATP binding domain exon 13 V654A single mutant at 10 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
3.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT ATP binding domain exon 13 K642E single mutant at 100 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
52.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT ATP binding domain exon 13 K642E single mutant at 10 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
16.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT ATP binding domain exon 14 T670I single mutant at 100 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
50.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT ATP binding domain exon 14 T670I single mutant at 10 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
9.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 17 D816H single mutant at 100 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
9.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 17 D816H single mutant at 10 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
0.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 17 D816V single mutant at 100 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
10.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 17 D816V single mutant at 10 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
5.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 17 D820E single mutant at 100 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
65.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 17 D820E single mutant at 10 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
13.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 17 D820Y single mutant at 100 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
80.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 17 D820Y single mutant at 10 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
25.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 17 Y823D single mutant at 100 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
88.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 17 Y823D single mutant at 10 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
27.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 18 A829P single mutant at 100 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
44.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 18 A829P single mutant at 10 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
4.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 11/13 V559D/V654A double mutant at 100 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
1.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 11/13 V559D/V654A double mutant at 10 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
0.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 11/17 V560G/D816V double mutant at 100 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
0.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 11/17 V560G/D816V double mutant at 10 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
0.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 11/17 V560G/N822K double mutant at 100 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
50.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human c-KIT A loop exon 11/17 V560G/N822K double mutant at 10 nM using poly (Glu,Tyr) 4:1 as substrate in presence of 33P-gamma-ATP by hotspot kinase assay relative to control
|
Homo sapiens
|
7.0
%
|
|
Journal : J Med Chem
Title : Identification of a Multitargeted Tyrosine Kinase Inhibitor for the Treatment of Gastrointestinal Stromal Tumors and Acute Myeloid Leukemia.
Year : 2019
Volume : 62
Issue : 24
First Page : 11135
Last Page : 11150
Authors : Lin WH, Wu SY, Yeh TK, Chen CT, Song JS, Shiao HY, Kuo CC, Hsu T, Lu CT, Wang PC, Wu TS, Peng YH, Lin HY, Chen CP, Weng YL, Kung FC, Wu MH, Su YC, Huang KW, Chou LH, Hsueh CC, Yen KJ, Kuo PC, Huang CL, Chen LT, Shih C, Tsai HJ, Jiaang WT.
Abstract : Gastrointestinal stromal tumors (GISTs) are prototypes of stem cell factor receptor (c-KIT)-driven cancer. Two receptor tyrosine kinases, c-KIT and fms-tyrosine kinase (FLT3), are frequently mutated in acute myeloid leukemia (AML) patients, and these mutations are associated with poor prognosis. In this study, we discovered a multitargeted tyrosine kinase inhibitor, compound 15a, with potent inhibition against single or double mutations of c-KIT developed in GISTs. Moreover, crystal structure analysis revealed the unique binding mode of 15a with c-KIT and may elucidate its high potency in inhibiting c-KIT kinase activity. Compound 15a inhibited cell proliferation and induced apoptosis by targeting c-KIT in c-KIT-mutant GIST cell lines. The antitumor effects of 15a were also demonstrated in GIST430 and GIST patient-derived xenograft models. Further studies demonstrated that 15a inhibited the proliferation of c-KIT- and FLT3-driven AML cells in vitro and in vivo. The results of this study suggest that 15a may be a potential anticancer drug for the treatment of GISTs and AML.
Inhibition of human N-terminal GST tagged VEGFR-2 expressed in baculovirus infected Sf9 cells using poly (Glu,Tyr) 4:1 as substrate in presence of ATP by Kinase-Glo luminescence assay
|
Homo sapiens
|
5.0
nM
|
|
Journal : Eur J Med Chem
Title : Novel potent substituted 4-amino-2-thiopyrimidines as dual VEGFR-2 and BRAF kinase inhibitors.
Year : 2019
Volume : 179
First Page : 707
Last Page : 722
Authors : Abdel-Mohsen HT, Omar MA, El Kerdawy AM, Mahmoud AEE, Ali MM, El Diwani HI.
Abstract : In the present study, we report the discovery of a novel class of substituted 4-amino-2-thiopyrimidines as antiangiogenic and antiproliferative agents. Structural hybridization between 4-substituted aminopyrimidines (VEGFR-2 inhibitors) and 2-thioxopyrimidines (BRAF inhibitors) was carried out to afford substituted 4-amino-2-thiopyrimidines as type II dual VEGFR-2/BRAF inhibitors. Our design strategy was tailored such that the 4-amino-2-thiopyrimidine scaffold is to be accommodated in the central gate area of the inactive DFG-out conformation of both enzymes. On one side, the hydrophobic substituent on the 4-amino group would occupy the hydrophobic back pocket and on the other side the substituent on the sulfide moiety should extend to fit in the hinge region (front pocket). Molecular docking simulations confirmed the ability of the designed compounds to accomplish the key interactions in VEGFR-2 and BRAF active sites. Most of the synthesized substituted 4-amino-2-thiopyrimidines demonstrated potent VEGFR-2 inhibitory activity at submicromolar concentrations. Compounds 8a, 8d, 9c and 9e showed IC<sub>50</sub> = 0.17, 0.12, 0.17 and 0.19 μM, respectively against VEGFR-2 in comparison to sorafenib (I) IC<sub>50</sub> = 0.10 μM and regorafenib (II) IC<sub>50</sub> = 0.005 μM. While compounds 9c, 9d and 10a showed IC<sub>50</sub> = 0.15, 0.22 and 0.11 μM, respectively against BRAF-WT. At 10 μM concentration 9c revealed promising in vitro broad-spectrum antiproliferative activity against cancer cell lines with growth inhibition percent ranging from 10 to 90%. Moreover, compounds 7b, 8d, 9a, 9b, 9c and 9d showed potent activity against MCF7 cell line (IC<sub>50</sub> = 17.18, 17.20, 19.98, 19.61, 13.02 and 16.54 μM, respectively). On the other hand, compounds 9c, 9d and 10d were found to be the most potent compounds against T-47D cell line (IC<sub>50</sub> = 2.18, 8.09 and 4.36 μM, respectively). Studying the effect of the most potent compounds on VEGFR-2 level in MCF7 cell line revealed that 9c and 9d showed inhibition percent of 84 and 80%, respectively, in comparison to sorafenib (I) (% inhibition = 90%).
Inhibition of human wild type BRAF by Kinase-Glo luminescence assay
|
Homo sapiens
|
40.0
nM
|
|
Journal : Eur J Med Chem
Title : Novel potent substituted 4-amino-2-thiopyrimidines as dual VEGFR-2 and BRAF kinase inhibitors.
Year : 2019
Volume : 179
First Page : 707
Last Page : 722
Authors : Abdel-Mohsen HT, Omar MA, El Kerdawy AM, Mahmoud AEE, Ali MM, El Diwani HI.
Abstract : In the present study, we report the discovery of a novel class of substituted 4-amino-2-thiopyrimidines as antiangiogenic and antiproliferative agents. Structural hybridization between 4-substituted aminopyrimidines (VEGFR-2 inhibitors) and 2-thioxopyrimidines (BRAF inhibitors) was carried out to afford substituted 4-amino-2-thiopyrimidines as type II dual VEGFR-2/BRAF inhibitors. Our design strategy was tailored such that the 4-amino-2-thiopyrimidine scaffold is to be accommodated in the central gate area of the inactive DFG-out conformation of both enzymes. On one side, the hydrophobic substituent on the 4-amino group would occupy the hydrophobic back pocket and on the other side the substituent on the sulfide moiety should extend to fit in the hinge region (front pocket). Molecular docking simulations confirmed the ability of the designed compounds to accomplish the key interactions in VEGFR-2 and BRAF active sites. Most of the synthesized substituted 4-amino-2-thiopyrimidines demonstrated potent VEGFR-2 inhibitory activity at submicromolar concentrations. Compounds 8a, 8d, 9c and 9e showed IC<sub>50</sub> = 0.17, 0.12, 0.17 and 0.19 μM, respectively against VEGFR-2 in comparison to sorafenib (I) IC<sub>50</sub> = 0.10 μM and regorafenib (II) IC<sub>50</sub> = 0.005 μM. While compounds 9c, 9d and 10a showed IC<sub>50</sub> = 0.15, 0.22 and 0.11 μM, respectively against BRAF-WT. At 10 μM concentration 9c revealed promising in vitro broad-spectrum antiproliferative activity against cancer cell lines with growth inhibition percent ranging from 10 to 90%. Moreover, compounds 7b, 8d, 9a, 9b, 9c and 9d showed potent activity against MCF7 cell line (IC<sub>50</sub> = 17.18, 17.20, 19.98, 19.61, 13.02 and 16.54 μM, respectively). On the other hand, compounds 9c, 9d and 10d were found to be the most potent compounds against T-47D cell line (IC<sub>50</sub> = 2.18, 8.09 and 4.36 μM, respectively). Studying the effect of the most potent compounds on VEGFR-2 level in MCF7 cell line revealed that 9c and 9d showed inhibition percent of 84 and 80%, respectively, in comparison to sorafenib (I) (% inhibition = 90%).
Inhibition of FGFR1 (unknown origin)
|
Homo sapiens
|
1.5
nM
|
|
Journal : Eur J Med Chem
Title : Novel potent substituted 4-amino-2-thiopyrimidines as dual VEGFR-2 and BRAF kinase inhibitors.
Year : 2019
Volume : 179
First Page : 707
Last Page : 722
Authors : Abdel-Mohsen HT, Omar MA, El Kerdawy AM, Mahmoud AEE, Ali MM, El Diwani HI.
Abstract : In the present study, we report the discovery of a novel class of substituted 4-amino-2-thiopyrimidines as antiangiogenic and antiproliferative agents. Structural hybridization between 4-substituted aminopyrimidines (VEGFR-2 inhibitors) and 2-thioxopyrimidines (BRAF inhibitors) was carried out to afford substituted 4-amino-2-thiopyrimidines as type II dual VEGFR-2/BRAF inhibitors. Our design strategy was tailored such that the 4-amino-2-thiopyrimidine scaffold is to be accommodated in the central gate area of the inactive DFG-out conformation of both enzymes. On one side, the hydrophobic substituent on the 4-amino group would occupy the hydrophobic back pocket and on the other side the substituent on the sulfide moiety should extend to fit in the hinge region (front pocket). Molecular docking simulations confirmed the ability of the designed compounds to accomplish the key interactions in VEGFR-2 and BRAF active sites. Most of the synthesized substituted 4-amino-2-thiopyrimidines demonstrated potent VEGFR-2 inhibitory activity at submicromolar concentrations. Compounds 8a, 8d, 9c and 9e showed IC<sub>50</sub> = 0.17, 0.12, 0.17 and 0.19 μM, respectively against VEGFR-2 in comparison to sorafenib (I) IC<sub>50</sub> = 0.10 μM and regorafenib (II) IC<sub>50</sub> = 0.005 μM. While compounds 9c, 9d and 10a showed IC<sub>50</sub> = 0.15, 0.22 and 0.11 μM, respectively against BRAF-WT. At 10 μM concentration 9c revealed promising in vitro broad-spectrum antiproliferative activity against cancer cell lines with growth inhibition percent ranging from 10 to 90%. Moreover, compounds 7b, 8d, 9a, 9b, 9c and 9d showed potent activity against MCF7 cell line (IC<sub>50</sub> = 17.18, 17.20, 19.98, 19.61, 13.02 and 16.54 μM, respectively). On the other hand, compounds 9c, 9d and 10d were found to be the most potent compounds against T-47D cell line (IC<sub>50</sub> = 2.18, 8.09 and 4.36 μM, respectively). Studying the effect of the most potent compounds on VEGFR-2 level in MCF7 cell line revealed that 9c and 9d showed inhibition percent of 84 and 80%, respectively, in comparison to sorafenib (I) (% inhibition = 90%).
Inhibition of RAF1 (unknown origin)
|
Homo sapiens
|
1.5
nM
|
|
Journal : Eur J Med Chem
Title : Novel potent substituted 4-amino-2-thiopyrimidines as dual VEGFR-2 and BRAF kinase inhibitors.
Year : 2019
Volume : 179
First Page : 707
Last Page : 722
Authors : Abdel-Mohsen HT, Omar MA, El Kerdawy AM, Mahmoud AEE, Ali MM, El Diwani HI.
Abstract : In the present study, we report the discovery of a novel class of substituted 4-amino-2-thiopyrimidines as antiangiogenic and antiproliferative agents. Structural hybridization between 4-substituted aminopyrimidines (VEGFR-2 inhibitors) and 2-thioxopyrimidines (BRAF inhibitors) was carried out to afford substituted 4-amino-2-thiopyrimidines as type II dual VEGFR-2/BRAF inhibitors. Our design strategy was tailored such that the 4-amino-2-thiopyrimidine scaffold is to be accommodated in the central gate area of the inactive DFG-out conformation of both enzymes. On one side, the hydrophobic substituent on the 4-amino group would occupy the hydrophobic back pocket and on the other side the substituent on the sulfide moiety should extend to fit in the hinge region (front pocket). Molecular docking simulations confirmed the ability of the designed compounds to accomplish the key interactions in VEGFR-2 and BRAF active sites. Most of the synthesized substituted 4-amino-2-thiopyrimidines demonstrated potent VEGFR-2 inhibitory activity at submicromolar concentrations. Compounds 8a, 8d, 9c and 9e showed IC<sub>50</sub> = 0.17, 0.12, 0.17 and 0.19 μM, respectively against VEGFR-2 in comparison to sorafenib (I) IC<sub>50</sub> = 0.10 μM and regorafenib (II) IC<sub>50</sub> = 0.005 μM. While compounds 9c, 9d and 10a showed IC<sub>50</sub> = 0.15, 0.22 and 0.11 μM, respectively against BRAF-WT. At 10 μM concentration 9c revealed promising in vitro broad-spectrum antiproliferative activity against cancer cell lines with growth inhibition percent ranging from 10 to 90%. Moreover, compounds 7b, 8d, 9a, 9b, 9c and 9d showed potent activity against MCF7 cell line (IC<sub>50</sub> = 17.18, 17.20, 19.98, 19.61, 13.02 and 16.54 μM, respectively). On the other hand, compounds 9c, 9d and 10d were found to be the most potent compounds against T-47D cell line (IC<sub>50</sub> = 2.18, 8.09 and 4.36 μM, respectively). Studying the effect of the most potent compounds on VEGFR-2 level in MCF7 cell line revealed that 9c and 9d showed inhibition percent of 84 and 80%, respectively, in comparison to sorafenib (I) (% inhibition = 90%).
Inhibition of PDGFR beta (561 to 1106 residues) (unknown origin)
|
Homo sapiens
|
1.5
nM
|
|
Journal : Eur J Med Chem
Title : Novel potent substituted 4-amino-2-thiopyrimidines as dual VEGFR-2 and BRAF kinase inhibitors.
Year : 2019
Volume : 179
First Page : 707
Last Page : 722
Authors : Abdel-Mohsen HT, Omar MA, El Kerdawy AM, Mahmoud AEE, Ali MM, El Diwani HI.
Abstract : In the present study, we report the discovery of a novel class of substituted 4-amino-2-thiopyrimidines as antiangiogenic and antiproliferative agents. Structural hybridization between 4-substituted aminopyrimidines (VEGFR-2 inhibitors) and 2-thioxopyrimidines (BRAF inhibitors) was carried out to afford substituted 4-amino-2-thiopyrimidines as type II dual VEGFR-2/BRAF inhibitors. Our design strategy was tailored such that the 4-amino-2-thiopyrimidine scaffold is to be accommodated in the central gate area of the inactive DFG-out conformation of both enzymes. On one side, the hydrophobic substituent on the 4-amino group would occupy the hydrophobic back pocket and on the other side the substituent on the sulfide moiety should extend to fit in the hinge region (front pocket). Molecular docking simulations confirmed the ability of the designed compounds to accomplish the key interactions in VEGFR-2 and BRAF active sites. Most of the synthesized substituted 4-amino-2-thiopyrimidines demonstrated potent VEGFR-2 inhibitory activity at submicromolar concentrations. Compounds 8a, 8d, 9c and 9e showed IC<sub>50</sub> = 0.17, 0.12, 0.17 and 0.19 μM, respectively against VEGFR-2 in comparison to sorafenib (I) IC<sub>50</sub> = 0.10 μM and regorafenib (II) IC<sub>50</sub> = 0.005 μM. While compounds 9c, 9d and 10a showed IC<sub>50</sub> = 0.15, 0.22 and 0.11 μM, respectively against BRAF-WT. At 10 μM concentration 9c revealed promising in vitro broad-spectrum antiproliferative activity against cancer cell lines with growth inhibition percent ranging from 10 to 90%. Moreover, compounds 7b, 8d, 9a, 9b, 9c and 9d showed potent activity against MCF7 cell line (IC<sub>50</sub> = 17.18, 17.20, 19.98, 19.61, 13.02 and 16.54 μM, respectively). On the other hand, compounds 9c, 9d and 10d were found to be the most potent compounds against T-47D cell line (IC<sub>50</sub> = 2.18, 8.09 and 4.36 μM, respectively). Studying the effect of the most potent compounds on VEGFR-2 level in MCF7 cell line revealed that 9c and 9d showed inhibition percent of 84 and 80%, respectively, in comparison to sorafenib (I) (% inhibition = 90%).
Inhibition of VEGFR1 (unknown origin)
|
Homo sapiens
|
1.5
nM
|
|
Journal : Eur J Med Chem
Title : Novel potent substituted 4-amino-2-thiopyrimidines as dual VEGFR-2 and BRAF kinase inhibitors.
Year : 2019
Volume : 179
First Page : 707
Last Page : 722
Authors : Abdel-Mohsen HT, Omar MA, El Kerdawy AM, Mahmoud AEE, Ali MM, El Diwani HI.
Abstract : In the present study, we report the discovery of a novel class of substituted 4-amino-2-thiopyrimidines as antiangiogenic and antiproliferative agents. Structural hybridization between 4-substituted aminopyrimidines (VEGFR-2 inhibitors) and 2-thioxopyrimidines (BRAF inhibitors) was carried out to afford substituted 4-amino-2-thiopyrimidines as type II dual VEGFR-2/BRAF inhibitors. Our design strategy was tailored such that the 4-amino-2-thiopyrimidine scaffold is to be accommodated in the central gate area of the inactive DFG-out conformation of both enzymes. On one side, the hydrophobic substituent on the 4-amino group would occupy the hydrophobic back pocket and on the other side the substituent on the sulfide moiety should extend to fit in the hinge region (front pocket). Molecular docking simulations confirmed the ability of the designed compounds to accomplish the key interactions in VEGFR-2 and BRAF active sites. Most of the synthesized substituted 4-amino-2-thiopyrimidines demonstrated potent VEGFR-2 inhibitory activity at submicromolar concentrations. Compounds 8a, 8d, 9c and 9e showed IC<sub>50</sub> = 0.17, 0.12, 0.17 and 0.19 μM, respectively against VEGFR-2 in comparison to sorafenib (I) IC<sub>50</sub> = 0.10 μM and regorafenib (II) IC<sub>50</sub> = 0.005 μM. While compounds 9c, 9d and 10a showed IC<sub>50</sub> = 0.15, 0.22 and 0.11 μM, respectively against BRAF-WT. At 10 μM concentration 9c revealed promising in vitro broad-spectrum antiproliferative activity against cancer cell lines with growth inhibition percent ranging from 10 to 90%. Moreover, compounds 7b, 8d, 9a, 9b, 9c and 9d showed potent activity against MCF7 cell line (IC<sub>50</sub> = 17.18, 17.20, 19.98, 19.61, 13.02 and 16.54 μM, respectively). On the other hand, compounds 9c, 9d and 10d were found to be the most potent compounds against T-47D cell line (IC<sub>50</sub> = 2.18, 8.09 and 4.36 μM, respectively). Studying the effect of the most potent compounds on VEGFR-2 level in MCF7 cell line revealed that 9c and 9d showed inhibition percent of 84 and 80%, respectively, in comparison to sorafenib (I) (% inhibition = 90%).
Inhibition of mouse VEGFR-2 (785 to 1376 residues)
|
Mus musculus
|
1.5
nM
|
|
Journal : Eur J Med Chem
Title : Novel potent substituted 4-amino-2-thiopyrimidines as dual VEGFR-2 and BRAF kinase inhibitors.
Year : 2019
Volume : 179
First Page : 707
Last Page : 722
Authors : Abdel-Mohsen HT, Omar MA, El Kerdawy AM, Mahmoud AEE, Ali MM, El Diwani HI.
Abstract : In the present study, we report the discovery of a novel class of substituted 4-amino-2-thiopyrimidines as antiangiogenic and antiproliferative agents. Structural hybridization between 4-substituted aminopyrimidines (VEGFR-2 inhibitors) and 2-thioxopyrimidines (BRAF inhibitors) was carried out to afford substituted 4-amino-2-thiopyrimidines as type II dual VEGFR-2/BRAF inhibitors. Our design strategy was tailored such that the 4-amino-2-thiopyrimidine scaffold is to be accommodated in the central gate area of the inactive DFG-out conformation of both enzymes. On one side, the hydrophobic substituent on the 4-amino group would occupy the hydrophobic back pocket and on the other side the substituent on the sulfide moiety should extend to fit in the hinge region (front pocket). Molecular docking simulations confirmed the ability of the designed compounds to accomplish the key interactions in VEGFR-2 and BRAF active sites. Most of the synthesized substituted 4-amino-2-thiopyrimidines demonstrated potent VEGFR-2 inhibitory activity at submicromolar concentrations. Compounds 8a, 8d, 9c and 9e showed IC<sub>50</sub> = 0.17, 0.12, 0.17 and 0.19 μM, respectively against VEGFR-2 in comparison to sorafenib (I) IC<sub>50</sub> = 0.10 μM and regorafenib (II) IC<sub>50</sub> = 0.005 μM. While compounds 9c, 9d and 10a showed IC<sub>50</sub> = 0.15, 0.22 and 0.11 μM, respectively against BRAF-WT. At 10 μM concentration 9c revealed promising in vitro broad-spectrum antiproliferative activity against cancer cell lines with growth inhibition percent ranging from 10 to 90%. Moreover, compounds 7b, 8d, 9a, 9b, 9c and 9d showed potent activity against MCF7 cell line (IC<sub>50</sub> = 17.18, 17.20, 19.98, 19.61, 13.02 and 16.54 μM, respectively). On the other hand, compounds 9c, 9d and 10d were found to be the most potent compounds against T-47D cell line (IC<sub>50</sub> = 2.18, 8.09 and 4.36 μM, respectively). Studying the effect of the most potent compounds on VEGFR-2 level in MCF7 cell line revealed that 9c and 9d showed inhibition percent of 84 and 80%, respectively, in comparison to sorafenib (I) (% inhibition = 90%).
Inhibition of mouse VEGFR-3 (818 to 1363 residues)
|
Mus musculus
|
1.5
nM
|
|
Journal : Eur J Med Chem
Title : Novel potent substituted 4-amino-2-thiopyrimidines as dual VEGFR-2 and BRAF kinase inhibitors.
Year : 2019
Volume : 179
First Page : 707
Last Page : 722
Authors : Abdel-Mohsen HT, Omar MA, El Kerdawy AM, Mahmoud AEE, Ali MM, El Diwani HI.
Abstract : In the present study, we report the discovery of a novel class of substituted 4-amino-2-thiopyrimidines as antiangiogenic and antiproliferative agents. Structural hybridization between 4-substituted aminopyrimidines (VEGFR-2 inhibitors) and 2-thioxopyrimidines (BRAF inhibitors) was carried out to afford substituted 4-amino-2-thiopyrimidines as type II dual VEGFR-2/BRAF inhibitors. Our design strategy was tailored such that the 4-amino-2-thiopyrimidine scaffold is to be accommodated in the central gate area of the inactive DFG-out conformation of both enzymes. On one side, the hydrophobic substituent on the 4-amino group would occupy the hydrophobic back pocket and on the other side the substituent on the sulfide moiety should extend to fit in the hinge region (front pocket). Molecular docking simulations confirmed the ability of the designed compounds to accomplish the key interactions in VEGFR-2 and BRAF active sites. Most of the synthesized substituted 4-amino-2-thiopyrimidines demonstrated potent VEGFR-2 inhibitory activity at submicromolar concentrations. Compounds 8a, 8d, 9c and 9e showed IC<sub>50</sub> = 0.17, 0.12, 0.17 and 0.19 μM, respectively against VEGFR-2 in comparison to sorafenib (I) IC<sub>50</sub> = 0.10 μM and regorafenib (II) IC<sub>50</sub> = 0.005 μM. While compounds 9c, 9d and 10a showed IC<sub>50</sub> = 0.15, 0.22 and 0.11 μM, respectively against BRAF-WT. At 10 μM concentration 9c revealed promising in vitro broad-spectrum antiproliferative activity against cancer cell lines with growth inhibition percent ranging from 10 to 90%. Moreover, compounds 7b, 8d, 9a, 9b, 9c and 9d showed potent activity against MCF7 cell line (IC<sub>50</sub> = 17.18, 17.20, 19.98, 19.61, 13.02 and 16.54 μM, respectively). On the other hand, compounds 9c, 9d and 10d were found to be the most potent compounds against T-47D cell line (IC<sub>50</sub> = 2.18, 8.09 and 4.36 μM, respectively). Studying the effect of the most potent compounds on VEGFR-2 level in MCF7 cell line revealed that 9c and 9d showed inhibition percent of 84 and 80%, respectively, in comparison to sorafenib (I) (% inhibition = 90%).
Inhibition of GST-tagged TIE2 (unknown origin) using biotin-Ahx-EPKDDAYPLYSDFG peptide as substrate by HTRF method
|
Homo sapiens
|
1.5
nM
|
|
Journal : Eur J Med Chem
Title : Novel potent substituted 4-amino-2-thiopyrimidines as dual VEGFR-2 and BRAF kinase inhibitors.
Year : 2019
Volume : 179
First Page : 707
Last Page : 722
Authors : Abdel-Mohsen HT, Omar MA, El Kerdawy AM, Mahmoud AEE, Ali MM, El Diwani HI.
Abstract : In the present study, we report the discovery of a novel class of substituted 4-amino-2-thiopyrimidines as antiangiogenic and antiproliferative agents. Structural hybridization between 4-substituted aminopyrimidines (VEGFR-2 inhibitors) and 2-thioxopyrimidines (BRAF inhibitors) was carried out to afford substituted 4-amino-2-thiopyrimidines as type II dual VEGFR-2/BRAF inhibitors. Our design strategy was tailored such that the 4-amino-2-thiopyrimidine scaffold is to be accommodated in the central gate area of the inactive DFG-out conformation of both enzymes. On one side, the hydrophobic substituent on the 4-amino group would occupy the hydrophobic back pocket and on the other side the substituent on the sulfide moiety should extend to fit in the hinge region (front pocket). Molecular docking simulations confirmed the ability of the designed compounds to accomplish the key interactions in VEGFR-2 and BRAF active sites. Most of the synthesized substituted 4-amino-2-thiopyrimidines demonstrated potent VEGFR-2 inhibitory activity at submicromolar concentrations. Compounds 8a, 8d, 9c and 9e showed IC<sub>50</sub> = 0.17, 0.12, 0.17 and 0.19 μM, respectively against VEGFR-2 in comparison to sorafenib (I) IC<sub>50</sub> = 0.10 μM and regorafenib (II) IC<sub>50</sub> = 0.005 μM. While compounds 9c, 9d and 10a showed IC<sub>50</sub> = 0.15, 0.22 and 0.11 μM, respectively against BRAF-WT. At 10 μM concentration 9c revealed promising in vitro broad-spectrum antiproliferative activity against cancer cell lines with growth inhibition percent ranging from 10 to 90%. Moreover, compounds 7b, 8d, 9a, 9b, 9c and 9d showed potent activity against MCF7 cell line (IC<sub>50</sub> = 17.18, 17.20, 19.98, 19.61, 13.02 and 16.54 μM, respectively). On the other hand, compounds 9c, 9d and 10d were found to be the most potent compounds against T-47D cell line (IC<sub>50</sub> = 2.18, 8.09 and 4.36 μM, respectively). Studying the effect of the most potent compounds on VEGFR-2 level in MCF7 cell line revealed that 9c and 9d showed inhibition percent of 84 and 80%, respectively, in comparison to sorafenib (I) (% inhibition = 90%).
Inhibition of BRAF (unknown origin)
|
Homo sapiens
|
1.5
nM
|
|
Journal : Eur J Med Chem
Title : Novel potent substituted 4-amino-2-thiopyrimidines as dual VEGFR-2 and BRAF kinase inhibitors.
Year : 2019
Volume : 179
First Page : 707
Last Page : 722
Authors : Abdel-Mohsen HT, Omar MA, El Kerdawy AM, Mahmoud AEE, Ali MM, El Diwani HI.
Abstract : In the present study, we report the discovery of a novel class of substituted 4-amino-2-thiopyrimidines as antiangiogenic and antiproliferative agents. Structural hybridization between 4-substituted aminopyrimidines (VEGFR-2 inhibitors) and 2-thioxopyrimidines (BRAF inhibitors) was carried out to afford substituted 4-amino-2-thiopyrimidines as type II dual VEGFR-2/BRAF inhibitors. Our design strategy was tailored such that the 4-amino-2-thiopyrimidine scaffold is to be accommodated in the central gate area of the inactive DFG-out conformation of both enzymes. On one side, the hydrophobic substituent on the 4-amino group would occupy the hydrophobic back pocket and on the other side the substituent on the sulfide moiety should extend to fit in the hinge region (front pocket). Molecular docking simulations confirmed the ability of the designed compounds to accomplish the key interactions in VEGFR-2 and BRAF active sites. Most of the synthesized substituted 4-amino-2-thiopyrimidines demonstrated potent VEGFR-2 inhibitory activity at submicromolar concentrations. Compounds 8a, 8d, 9c and 9e showed IC<sub>50</sub> = 0.17, 0.12, 0.17 and 0.19 μM, respectively against VEGFR-2 in comparison to sorafenib (I) IC<sub>50</sub> = 0.10 μM and regorafenib (II) IC<sub>50</sub> = 0.005 μM. While compounds 9c, 9d and 10a showed IC<sub>50</sub> = 0.15, 0.22 and 0.11 μM, respectively against BRAF-WT. At 10 μM concentration 9c revealed promising in vitro broad-spectrum antiproliferative activity against cancer cell lines with growth inhibition percent ranging from 10 to 90%. Moreover, compounds 7b, 8d, 9a, 9b, 9c and 9d showed potent activity against MCF7 cell line (IC<sub>50</sub> = 17.18, 17.20, 19.98, 19.61, 13.02 and 16.54 μM, respectively). On the other hand, compounds 9c, 9d and 10d were found to be the most potent compounds against T-47D cell line (IC<sub>50</sub> = 2.18, 8.09 and 4.36 μM, respectively). Studying the effect of the most potent compounds on VEGFR-2 level in MCF7 cell line revealed that 9c and 9d showed inhibition percent of 84 and 80%, respectively, in comparison to sorafenib (I) (% inhibition = 90%).
Inhibition of VEGFR2 (unknown origin)
|
Homo sapiens
|
4.2
nM
|
|
Journal : Eur J Med Chem
Title : Design, synthesis and docking study of novel picolinamide derivatives as anticancer agents and VEGFR-2 inhibitors.
Year : 2019
Volume : 168
First Page : 315
Last Page : 329
Authors : Zeidan MA, Mostafa AS, Gomaa RM, Abou-Zeid LA, El-Mesery M, El-Sayed MA, Selim KB.
Abstract : Two series of picolinamide derivatives bearing (thio)urea and dithiocarbamate moieties were designed and synthesized as VEGFR-2 kinase inhibitors. All the new compounds were screened for their cytotoxic activity against A549 cancer cell line and VEGFR-2 inhibitory activity. Compounds 7h, 9a and 9l showed potent inhibitory activity against VEGFR-2 kinase with IC50 values of 87, 27 and 94 nM, respectively in comparison to sorafenib (IC50 = 180 nM) as a reference. Compounds 7h, 9a and 9l were further screened for their antitumor activity against specific resistant human cancer cell lines from different origins (Panc-1, OVCAR-3, HT29 and 786-O cell lines) where compound 7h showed significant cell death in most of them. Multi-kinase inhibition assays were performed for the most potent VEGFR-2 inhibitors where compound 7h showed enhanced potency towards EGFR, HER-2, c-MET and MER kinases. Cell cycle analysis of A549 cells treated with 9a showed cell cycle arrest at G2/M phase and pro-apoptotic activity as indicated by annexin V-FITC staining.
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
14.64
%
|
|
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
4.524
%
|
|
Title : Identification of inhibitors of SARS-Cov2 M-Pro enzymatic activity using a small molecule repurposing screen
Year : 2020
Authors : Maria Kuzikov, Elisa Costanzi, Jeanette Reinshagen, Francesca Esposito, Laura Vangeel, Markus Wolf, Bernhard Ellinger, Carsten Claussen, Gerd Geisslinger, Angela Corona, Daniela Iaconis, Carmine Talarico, Candida Manelfi, Rolando Cannalire, Giulia Rossetti, Jonas Gossen, Simone Albani, Francesco Musiani, Katja Herzog, Yang Ye, Barbara Giabbai, Nicola Demitri, Dirk Jochmans, Steven De Jonghe, Jasper Rymenants, Vincenzo Summa, Enzo Tramontano, Andrea R. Beccari, Pieter Leyssen, Paola Storici, Johan Neyts, Philip Gribbon, and Andrea Zaliani
Abstract : Compound repurposing is an important strategy being pursued in the identification of effective treatment against the SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (M-Pro), also termed 3CL-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyprotein into 11 non-structural proteins. We report the results of a screening campaign involving ca 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and chemicals regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, but we have also identified 68 compounds with IC50 lower than 1 uM and 127 compounds with IC50 lower than 5 uM. Profiling showed 67% of confirmed hits were selective (> 5 fold) against other Cys- and Ser- proteases (Chymotrypsin and Cathepsin-L) and MERS 3CL-Pro. Selected compounds were also analysed in their binding characteristics.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
17.98
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
10.39
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
10.39
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
17.98
%
|
|
Title : Cytopathic SARS-Cov2 screening on VERO-E6 cells in a large repurposing effort
Year : 2020
Authors : Andrea Zaliani, Laura Vangeel, Jeanette Reinshagen, Daniela Iaconis, Maria Kuzikov, Oliver Keminer, Markus Wolf, Bernhard Ellinger, Francesca Esposito, Angela Corona, Enzo Tramontano, Candida Manelfi, Katja Herzog, Dirk Jochmans, Steven De Jonghe, Winston Chiu, Thibault Francken, Joost Schepers, Caroline Collard, Kayvan Abbasi, Carsten Claussen , Vincenzo Summa, Andrea R. Beccari, Johan Neyts, Philip Gribbon and Pieter Leyssen
Abstract : Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.
Antiproliferative activity against human HCT116 cells after 48 hrs by MTT assay
|
Homo sapiens
|
160.0
nM
|
|
Journal : Eur J Med Chem
Title : Design, synthesis and biological evaluation of 2-H pyrazole derivatives containing morpholine moieties as highly potent small molecule inhibitors of APC-Asef interaction.
Year : 2019
Volume : 177
First Page : 425
Last Page : 447
Authors : Yan XQ, Wang ZC, Qi PF, Li G, Zhu HL.
Abstract : Mutated adenomatous polyposis coli (APC) selectively combining with Asef has been reported to be implicated in promoting colon cancer proliferation, invasion and metastasis in several cancer biotherapy studies. However, there were universally resistance and harsh terms in disrupting APC-Asef interaction in biotherapy. Under the circumstances small-molecule inhibitors as the new APC interface could resolve the problems. In this research, a series of novel dihydropyrazole derivatives containing morpholine as high potent interaction inhibitors between APC and Asef were first synthesized after selection by means of docking simulation and virtual screening. Afterwards they were evaluated interaction inhibition of APC-Asef and pharmacological efficiency both in vitro and in vivo utilizing orthotopic transplantation model with multi-angle of view. Among them, compound 7g exhibited most excellent anti-proliferation activities against HCT116 cells with IC<sub>50</sub> of 0.10 ± 0.01 μM than Regorafenib (IC<sub>50</sub> = 0.16 ± 0.04 μM). The results favored our rational design intention and provides a new class of small-molecule inhibitors available for the development of colon tumor therapeutics targeting APC-Asef interaction inhibitions.
Inhibition of cell adhesion of human HCT116 cells assessed as cell adhesion to fibronectin at 4 uM after 24 hrs by MTT/ELISA method (Rvb = 78%)
|
Homo sapiens
|
50.0
%
|
|
Journal : Eur J Med Chem
Title : Design, synthesis and biological evaluation of 2-H pyrazole derivatives containing morpholine moieties as highly potent small molecule inhibitors of APC-Asef interaction.
Year : 2019
Volume : 177
First Page : 425
Last Page : 447
Authors : Yan XQ, Wang ZC, Qi PF, Li G, Zhu HL.
Abstract : Mutated adenomatous polyposis coli (APC) selectively combining with Asef has been reported to be implicated in promoting colon cancer proliferation, invasion and metastasis in several cancer biotherapy studies. However, there were universally resistance and harsh terms in disrupting APC-Asef interaction in biotherapy. Under the circumstances small-molecule inhibitors as the new APC interface could resolve the problems. In this research, a series of novel dihydropyrazole derivatives containing morpholine as high potent interaction inhibitors between APC and Asef were first synthesized after selection by means of docking simulation and virtual screening. Afterwards they were evaluated interaction inhibition of APC-Asef and pharmacological efficiency both in vitro and in vivo utilizing orthotopic transplantation model with multi-angle of view. Among them, compound 7g exhibited most excellent anti-proliferation activities against HCT116 cells with IC<sub>50</sub> of 0.10 ± 0.01 μM than Regorafenib (IC<sub>50</sub> = 0.16 ± 0.04 μM). The results favored our rational design intention and provides a new class of small-molecule inhibitors available for the development of colon tumor therapeutics targeting APC-Asef interaction inhibitions.
Inhibition of cell adhesion of human HCT116 cells assessed as cell adhesion to fibronectin at 2 uM after 24 hrs by MTT/ELISA method (Rvb = 78%)
|
Homo sapiens
|
58.0
%
|
|
Journal : Eur J Med Chem
Title : Design, synthesis and biological evaluation of 2-H pyrazole derivatives containing morpholine moieties as highly potent small molecule inhibitors of APC-Asef interaction.
Year : 2019
Volume : 177
First Page : 425
Last Page : 447
Authors : Yan XQ, Wang ZC, Qi PF, Li G, Zhu HL.
Abstract : Mutated adenomatous polyposis coli (APC) selectively combining with Asef has been reported to be implicated in promoting colon cancer proliferation, invasion and metastasis in several cancer biotherapy studies. However, there were universally resistance and harsh terms in disrupting APC-Asef interaction in biotherapy. Under the circumstances small-molecule inhibitors as the new APC interface could resolve the problems. In this research, a series of novel dihydropyrazole derivatives containing morpholine as high potent interaction inhibitors between APC and Asef were first synthesized after selection by means of docking simulation and virtual screening. Afterwards they were evaluated interaction inhibition of APC-Asef and pharmacological efficiency both in vitro and in vivo utilizing orthotopic transplantation model with multi-angle of view. Among them, compound 7g exhibited most excellent anti-proliferation activities against HCT116 cells with IC<sub>50</sub> of 0.10 ± 0.01 μM than Regorafenib (IC<sub>50</sub> = 0.16 ± 0.04 μM). The results favored our rational design intention and provides a new class of small-molecule inhibitors available for the development of colon tumor therapeutics targeting APC-Asef interaction inhibitions.
Inhibition of cell adhesion of human HCT116 cells assessed as cell adhesion to fibronectin at 1 uM after 24 hrs by MTT/ELISA method (Rvb = 78%)
|
Homo sapiens
|
69.0
%
|
|
Journal : Eur J Med Chem
Title : Design, synthesis and biological evaluation of 2-H pyrazole derivatives containing morpholine moieties as highly potent small molecule inhibitors of APC-Asef interaction.
Year : 2019
Volume : 177
First Page : 425
Last Page : 447
Authors : Yan XQ, Wang ZC, Qi PF, Li G, Zhu HL.
Abstract : Mutated adenomatous polyposis coli (APC) selectively combining with Asef has been reported to be implicated in promoting colon cancer proliferation, invasion and metastasis in several cancer biotherapy studies. However, there were universally resistance and harsh terms in disrupting APC-Asef interaction in biotherapy. Under the circumstances small-molecule inhibitors as the new APC interface could resolve the problems. In this research, a series of novel dihydropyrazole derivatives containing morpholine as high potent interaction inhibitors between APC and Asef were first synthesized after selection by means of docking simulation and virtual screening. Afterwards they were evaluated interaction inhibition of APC-Asef and pharmacological efficiency both in vitro and in vivo utilizing orthotopic transplantation model with multi-angle of view. Among them, compound 7g exhibited most excellent anti-proliferation activities against HCT116 cells with IC<sub>50</sub> of 0.10 ± 0.01 μM than Regorafenib (IC<sub>50</sub> = 0.16 ± 0.04 μM). The results favored our rational design intention and provides a new class of small-molecule inhibitors available for the development of colon tumor therapeutics targeting APC-Asef interaction inhibitions.
Inhibition of cell adhesion of human HCT116 cells assessed as cell adhesion to laminin at 1 uM after 24 hrs by MTT/ELISA method (Rvb = 82%)
|
Homo sapiens
|
72.0
%
|
|
Journal : Eur J Med Chem
Title : Design, synthesis and biological evaluation of 2-H pyrazole derivatives containing morpholine moieties as highly potent small molecule inhibitors of APC-Asef interaction.
Year : 2019
Volume : 177
First Page : 425
Last Page : 447
Authors : Yan XQ, Wang ZC, Qi PF, Li G, Zhu HL.
Abstract : Mutated adenomatous polyposis coli (APC) selectively combining with Asef has been reported to be implicated in promoting colon cancer proliferation, invasion and metastasis in several cancer biotherapy studies. However, there were universally resistance and harsh terms in disrupting APC-Asef interaction in biotherapy. Under the circumstances small-molecule inhibitors as the new APC interface could resolve the problems. In this research, a series of novel dihydropyrazole derivatives containing morpholine as high potent interaction inhibitors between APC and Asef were first synthesized after selection by means of docking simulation and virtual screening. Afterwards they were evaluated interaction inhibition of APC-Asef and pharmacological efficiency both in vitro and in vivo utilizing orthotopic transplantation model with multi-angle of view. Among them, compound 7g exhibited most excellent anti-proliferation activities against HCT116 cells with IC<sub>50</sub> of 0.10 ± 0.01 μM than Regorafenib (IC<sub>50</sub> = 0.16 ± 0.04 μM). The results favored our rational design intention and provides a new class of small-molecule inhibitors available for the development of colon tumor therapeutics targeting APC-Asef interaction inhibitions.
Inhibition of cell adhesion of human HCT116 cells assessed as cell adhesion to laminin at 2 uM after 24 hrs by MTT/ELISA method (Rvb = 82%)
|
Homo sapiens
|
65.0
%
|
|
Journal : Eur J Med Chem
Title : Design, synthesis and biological evaluation of 2-H pyrazole derivatives containing morpholine moieties as highly potent small molecule inhibitors of APC-Asef interaction.
Year : 2019
Volume : 177
First Page : 425
Last Page : 447
Authors : Yan XQ, Wang ZC, Qi PF, Li G, Zhu HL.
Abstract : Mutated adenomatous polyposis coli (APC) selectively combining with Asef has been reported to be implicated in promoting colon cancer proliferation, invasion and metastasis in several cancer biotherapy studies. However, there were universally resistance and harsh terms in disrupting APC-Asef interaction in biotherapy. Under the circumstances small-molecule inhibitors as the new APC interface could resolve the problems. In this research, a series of novel dihydropyrazole derivatives containing morpholine as high potent interaction inhibitors between APC and Asef were first synthesized after selection by means of docking simulation and virtual screening. Afterwards they were evaluated interaction inhibition of APC-Asef and pharmacological efficiency both in vitro and in vivo utilizing orthotopic transplantation model with multi-angle of view. Among them, compound 7g exhibited most excellent anti-proliferation activities against HCT116 cells with IC<sub>50</sub> of 0.10 ± 0.01 μM than Regorafenib (IC<sub>50</sub> = 0.16 ± 0.04 μM). The results favored our rational design intention and provides a new class of small-molecule inhibitors available for the development of colon tumor therapeutics targeting APC-Asef interaction inhibitions.
Inhibition of cell adhesion of human HCT116 cells assessed as cell adhesion to laminin at 4 uM after 24 hrs by MTT/ELISA method (Rvb = 82%)
|
Homo sapiens
|
54.0
%
|
|
Journal : Eur J Med Chem
Title : Design, synthesis and biological evaluation of 2-H pyrazole derivatives containing morpholine moieties as highly potent small molecule inhibitors of APC-Asef interaction.
Year : 2019
Volume : 177
First Page : 425
Last Page : 447
Authors : Yan XQ, Wang ZC, Qi PF, Li G, Zhu HL.
Abstract : Mutated adenomatous polyposis coli (APC) selectively combining with Asef has been reported to be implicated in promoting colon cancer proliferation, invasion and metastasis in several cancer biotherapy studies. However, there were universally resistance and harsh terms in disrupting APC-Asef interaction in biotherapy. Under the circumstances small-molecule inhibitors as the new APC interface could resolve the problems. In this research, a series of novel dihydropyrazole derivatives containing morpholine as high potent interaction inhibitors between APC and Asef were first synthesized after selection by means of docking simulation and virtual screening. Afterwards they were evaluated interaction inhibition of APC-Asef and pharmacological efficiency both in vitro and in vivo utilizing orthotopic transplantation model with multi-angle of view. Among them, compound 7g exhibited most excellent anti-proliferation activities against HCT116 cells with IC<sub>50</sub> of 0.10 ± 0.01 μM than Regorafenib (IC<sub>50</sub> = 0.16 ± 0.04 μM). The results favored our rational design intention and provides a new class of small-molecule inhibitors available for the development of colon tumor therapeutics targeting APC-Asef interaction inhibitions.