Inhibition of HDAC from human HeLa cells
|
Homo sapiens
|
28.0
nM
|
|
Journal : J. Med. Chem.
Title : Histone deacetylase inhibitors: from bench to clinic.
Year : 2008
Volume : 51
Issue : 6
First Page : 1505
Last Page : 1529
Authors : Paris M, Porcelloni M, Binaschi M, Fattori D.
Inhibition of HDAC1 in HEK293 cells
|
None
|
18.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases.
Year : 2008
Volume : 18
Issue : 6
First Page : 1814
Last Page : 1819
Authors : Jones P, Altamura S, De Francesco R, Gallinari P, Lahm A, Neddermann P, Rowley M, Serafini S, Steinkühler C.
Abstract : It has been widely debated whether class IIa HDACs have catalytic deacetylase activity, and whether this plays any part in controlling gene expression. Herein, it has been demonstrated that class IIa HDACs isolated from mammalian cells are contaminated with other deacetylases, but can be prepared cleanly in Escherichia coli. These bacteria preparations have weak but measurable deacetylase activity. The low efficiency can be restored either by: mutation of an active site histidine to tyrosine, or by the use of a non-acetylated lysine substrate, allowing the development of assays to identify class IIa HDAC inhibitors.
Inhibition of HDAC3 in HEK293 cells
|
None
|
46.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases.
Year : 2008
Volume : 18
Issue : 6
First Page : 1814
Last Page : 1819
Authors : Jones P, Altamura S, De Francesco R, Gallinari P, Lahm A, Neddermann P, Rowley M, Serafini S, Steinkühler C.
Abstract : It has been widely debated whether class IIa HDACs have catalytic deacetylase activity, and whether this plays any part in controlling gene expression. Herein, it has been demonstrated that class IIa HDACs isolated from mammalian cells are contaminated with other deacetylases, but can be prepared cleanly in Escherichia coli. These bacteria preparations have weak but measurable deacetylase activity. The low efficiency can be restored either by: mutation of an active site histidine to tyrosine, or by the use of a non-acetylated lysine substrate, allowing the development of assays to identify class IIa HDAC inhibitors.
Inhibition of HDAC4 H976Y mutant expressed in Escherichia coli
|
Homo sapiens
|
24.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases.
Year : 2008
Volume : 18
Issue : 6
First Page : 1814
Last Page : 1819
Authors : Jones P, Altamura S, De Francesco R, Gallinari P, Lahm A, Neddermann P, Rowley M, Serafini S, Steinkühler C.
Abstract : It has been widely debated whether class IIa HDACs have catalytic deacetylase activity, and whether this plays any part in controlling gene expression. Herein, it has been demonstrated that class IIa HDACs isolated from mammalian cells are contaminated with other deacetylases, but can be prepared cleanly in Escherichia coli. These bacteria preparations have weak but measurable deacetylase activity. The low efficiency can be restored either by: mutation of an active site histidine to tyrosine, or by the use of a non-acetylated lysine substrate, allowing the development of assays to identify class IIa HDAC inhibitors.
Inhibition of wild type HDAC4 expressed in Escherichia coli at 2 uM
|
None
|
20.0
%
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases.
Year : 2008
Volume : 18
Issue : 6
First Page : 1814
Last Page : 1819
Authors : Jones P, Altamura S, De Francesco R, Gallinari P, Lahm A, Neddermann P, Rowley M, Serafini S, Steinkühler C.
Abstract : It has been widely debated whether class IIa HDACs have catalytic deacetylase activity, and whether this plays any part in controlling gene expression. Herein, it has been demonstrated that class IIa HDACs isolated from mammalian cells are contaminated with other deacetylases, but can be prepared cleanly in Escherichia coli. These bacteria preparations have weak but measurable deacetylase activity. The low efficiency can be restored either by: mutation of an active site histidine to tyrosine, or by the use of a non-acetylated lysine substrate, allowing the development of assays to identify class IIa HDAC inhibitors.
Inhibition of HDAC6 in HEK293 cells
|
None
|
15.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases.
Year : 2008
Volume : 18
Issue : 6
First Page : 1814
Last Page : 1819
Authors : Jones P, Altamura S, De Francesco R, Gallinari P, Lahm A, Neddermann P, Rowley M, Serafini S, Steinkühler C.
Abstract : It has been widely debated whether class IIa HDACs have catalytic deacetylase activity, and whether this plays any part in controlling gene expression. Herein, it has been demonstrated that class IIa HDACs isolated from mammalian cells are contaminated with other deacetylases, but can be prepared cleanly in Escherichia coli. These bacteria preparations have weak but measurable deacetylase activity. The low efficiency can be restored either by: mutation of an active site histidine to tyrosine, or by the use of a non-acetylated lysine substrate, allowing the development of assays to identify class IIa HDAC inhibitors.
Inhibition of human HDAC1
|
Homo sapiens
|
0.85
nM
|
|
Journal : Nat. Chem. Biol.
Title : Chemical phylogenetics of histone deacetylases.
Year : 2010
Volume : 6
Issue : 3
First Page : 238
Last Page : 243
Authors : Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R.
Abstract : The broad study of histone deacetylases in chemistry, biology and medicine relies on tool compounds to derive mechanistic insights. A phylogenetic analysis of class I and II histone deacetylases (HDACs) as targets of a comprehensive, structurally diverse panel of inhibitors revealed unexpected isoform selectivity even among compounds widely perceived as nonselective. The synthesis and study of a focused library of cinnamic hydroxamates allowed the identification of, to our knowledge, the first nonselective HDAC inhibitor. These data will guide a more informed use of HDAC inhibitors as chemical probes and therapeutic agents.
Inhibition of human HDAC2
|
Homo sapiens
|
0.85
nM
|
|
Journal : Nat. Chem. Biol.
Title : Chemical phylogenetics of histone deacetylases.
Year : 2010
Volume : 6
Issue : 3
First Page : 238
Last Page : 243
Authors : Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R.
Abstract : The broad study of histone deacetylases in chemistry, biology and medicine relies on tool compounds to derive mechanistic insights. A phylogenetic analysis of class I and II histone deacetylases (HDACs) as targets of a comprehensive, structurally diverse panel of inhibitors revealed unexpected isoform selectivity even among compounds widely perceived as nonselective. The synthesis and study of a focused library of cinnamic hydroxamates allowed the identification of, to our knowledge, the first nonselective HDAC inhibitor. These data will guide a more informed use of HDAC inhibitors as chemical probes and therapeutic agents.
Inhibition of human HDAC3
|
Homo sapiens
|
1.5
nM
|
|
Journal : Nat. Chem. Biol.
Title : Chemical phylogenetics of histone deacetylases.
Year : 2010
Volume : 6
Issue : 3
First Page : 238
Last Page : 243
Authors : Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R.
Abstract : The broad study of histone deacetylases in chemistry, biology and medicine relies on tool compounds to derive mechanistic insights. A phylogenetic analysis of class I and II histone deacetylases (HDACs) as targets of a comprehensive, structurally diverse panel of inhibitors revealed unexpected isoform selectivity even among compounds widely perceived as nonselective. The synthesis and study of a focused library of cinnamic hydroxamates allowed the identification of, to our knowledge, the first nonselective HDAC inhibitor. These data will guide a more informed use of HDAC inhibitors as chemical probes and therapeutic agents.
Inhibition of human HDAC4
|
Homo sapiens
|
380.0
nM
|
|
Journal : Nat. Chem. Biol.
Title : Chemical phylogenetics of histone deacetylases.
Year : 2010
Volume : 6
Issue : 3
First Page : 238
Last Page : 243
Authors : Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R.
Abstract : The broad study of histone deacetylases in chemistry, biology and medicine relies on tool compounds to derive mechanistic insights. A phylogenetic analysis of class I and II histone deacetylases (HDACs) as targets of a comprehensive, structurally diverse panel of inhibitors revealed unexpected isoform selectivity even among compounds widely perceived as nonselective. The synthesis and study of a focused library of cinnamic hydroxamates allowed the identification of, to our knowledge, the first nonselective HDAC inhibitor. These data will guide a more informed use of HDAC inhibitors as chemical probes and therapeutic agents.
Inhibition of human HDAC5
|
Homo sapiens
|
175.0
nM
|
|
Journal : Nat. Chem. Biol.
Title : Chemical phylogenetics of histone deacetylases.
Year : 2010
Volume : 6
Issue : 3
First Page : 238
Last Page : 243
Authors : Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R.
Abstract : The broad study of histone deacetylases in chemistry, biology and medicine relies on tool compounds to derive mechanistic insights. A phylogenetic analysis of class I and II histone deacetylases (HDACs) as targets of a comprehensive, structurally diverse panel of inhibitors revealed unexpected isoform selectivity even among compounds widely perceived as nonselective. The synthesis and study of a focused library of cinnamic hydroxamates allowed the identification of, to our knowledge, the first nonselective HDAC inhibitor. These data will guide a more informed use of HDAC inhibitors as chemical probes and therapeutic agents.
Inhibition of human HDAC6
|
Homo sapiens
|
1.6
nM
|
|
Journal : Nat. Chem. Biol.
Title : Chemical phylogenetics of histone deacetylases.
Year : 2010
Volume : 6
Issue : 3
First Page : 238
Last Page : 243
Authors : Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R.
Abstract : The broad study of histone deacetylases in chemistry, biology and medicine relies on tool compounds to derive mechanistic insights. A phylogenetic analysis of class I and II histone deacetylases (HDACs) as targets of a comprehensive, structurally diverse panel of inhibitors revealed unexpected isoform selectivity even among compounds widely perceived as nonselective. The synthesis and study of a focused library of cinnamic hydroxamates allowed the identification of, to our knowledge, the first nonselective HDAC inhibitor. These data will guide a more informed use of HDAC inhibitors as chemical probes and therapeutic agents.
Inhibition of human HDAC7
|
Homo sapiens
|
75.0
nM
|
|
Journal : Nat. Chem. Biol.
Title : Chemical phylogenetics of histone deacetylases.
Year : 2010
Volume : 6
Issue : 3
First Page : 238
Last Page : 243
Authors : Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R.
Abstract : The broad study of histone deacetylases in chemistry, biology and medicine relies on tool compounds to derive mechanistic insights. A phylogenetic analysis of class I and II histone deacetylases (HDACs) as targets of a comprehensive, structurally diverse panel of inhibitors revealed unexpected isoform selectivity even among compounds widely perceived as nonselective. The synthesis and study of a focused library of cinnamic hydroxamates allowed the identification of, to our knowledge, the first nonselective HDAC inhibitor. These data will guide a more informed use of HDAC inhibitors as chemical probes and therapeutic agents.
Activity of human HDAC8
|
Homo sapiens
|
25.0
nM
|
|
Journal : Nat. Chem. Biol.
Title : Chemical phylogenetics of histone deacetylases.
Year : 2010
Volume : 6
Issue : 3
First Page : 238
Last Page : 243
Authors : Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R.
Abstract : The broad study of histone deacetylases in chemistry, biology and medicine relies on tool compounds to derive mechanistic insights. A phylogenetic analysis of class I and II histone deacetylases (HDACs) as targets of a comprehensive, structurally diverse panel of inhibitors revealed unexpected isoform selectivity even among compounds widely perceived as nonselective. The synthesis and study of a focused library of cinnamic hydroxamates allowed the identification of, to our knowledge, the first nonselective HDAC inhibitor. These data will guide a more informed use of HDAC inhibitors as chemical probes and therapeutic agents.
Inhibition of human HDAC9
|
Homo sapiens
|
250.0
nM
|
|
Journal : Nat. Chem. Biol.
Title : Chemical phylogenetics of histone deacetylases.
Year : 2010
Volume : 6
Issue : 3
First Page : 238
Last Page : 243
Authors : Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T, Mazitschek R.
Abstract : The broad study of histone deacetylases in chemistry, biology and medicine relies on tool compounds to derive mechanistic insights. A phylogenetic analysis of class I and II histone deacetylases (HDACs) as targets of a comprehensive, structurally diverse panel of inhibitors revealed unexpected isoform selectivity even among compounds widely perceived as nonselective. The synthesis and study of a focused library of cinnamic hydroxamates allowed the identification of, to our knowledge, the first nonselective HDAC inhibitor. These data will guide a more informed use of HDAC inhibitors as chemical probes and therapeutic agents.
Inhibition of purified recombinant HDAC1
|
None
|
15.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : The design, synthesis and structure-activity relationships of novel isoindoline-based histone deacetylase inhibitors.
Year : 2011
Volume : 21
Issue : 16
First Page : 4909
Last Page : 4912
Authors : Shultz M, Fan J, Chen C, Cho YS, Davis N, Bickford S, Buteau K, Cao X, Holmqvist M, Hsu M, Jiang L, Liu G, Lu Q, Patel C, Suresh JR, Selvaraj M, Urban L, Wang P, Yan-Neale Y, Whitehead L, Zhang H, Zhou L, Atadja P.
Abstract : The design, synthesis and biological evaluation of a novel series of isoindoline-based hydroxamates is described. Several analogs were shown to inhibit HDAC1 with IC(50) values in the low nanomolar range and inhibit cellular proliferation of HCT116 human colon cancer cells in the sub-micromolar range. The cellular potency of compound 17e was found to have greater in vitro anti-proliferative activity than several compounds in late stage clinical trials for the treatment of cancer. The in vitro safety profiles of selected compounds were assessed and shown to be suitable for further lead optimization.
Antiproliferative activity against human HCT116 cells
|
Homo sapiens
|
160.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : The design, synthesis and structure-activity relationships of novel isoindoline-based histone deacetylase inhibitors.
Year : 2011
Volume : 21
Issue : 16
First Page : 4909
Last Page : 4912
Authors : Shultz M, Fan J, Chen C, Cho YS, Davis N, Bickford S, Buteau K, Cao X, Holmqvist M, Hsu M, Jiang L, Liu G, Lu Q, Patel C, Suresh JR, Selvaraj M, Urban L, Wang P, Yan-Neale Y, Whitehead L, Zhang H, Zhou L, Atadja P.
Abstract : The design, synthesis and biological evaluation of a novel series of isoindoline-based hydroxamates is described. Several analogs were shown to inhibit HDAC1 with IC(50) values in the low nanomolar range and inhibit cellular proliferation of HCT116 human colon cancer cells in the sub-micromolar range. The cellular potency of compound 17e was found to have greater in vitro anti-proliferative activity than several compounds in late stage clinical trials for the treatment of cancer. The in vitro safety profiles of selected compounds were assessed and shown to be suitable for further lead optimization.
Antiproliferative activity against human HCT116 cells assessed as growth inhibition
|
Homo sapiens
|
160.0
nM
|
|
Journal : J. Med. Chem.
Title : Optimization of the in vitro cardiac safety of hydroxamate-based histone deacetylase inhibitors.
Year : 2011
Volume : 54
Issue : 13
First Page : 4752
Last Page : 4772
Authors : Shultz MD, Cao X, Chen CH, Cho YS, Davis NR, Eckman J, Fan J, Fekete A, Firestone B, Flynn J, Green J, Growney JD, Holmqvist M, Hsu M, Jansson D, Jiang L, Kwon P, Liu G, Lombardo F, Lu Q, Majumdar D, Meta C, Perez L, Pu M, Ramsey T, Remiszewski S, Skolnik S, Traebert M, Urban L, Uttamsingh V, Wang P, Whitebread S, Whitehead L, Yan-Neale Y, Yao YM, Zhou L, Atadja P.
Abstract : Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree of pharmacophore homology between these two targets was discovered. This similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels.
Antiproliferative activity against human H1299 cells
|
Homo sapiens
|
460.0
nM
|
|
Journal : J. Med. Chem.
Title : Optimization of the in vitro cardiac safety of hydroxamate-based histone deacetylase inhibitors.
Year : 2011
Volume : 54
Issue : 13
First Page : 4752
Last Page : 4772
Authors : Shultz MD, Cao X, Chen CH, Cho YS, Davis NR, Eckman J, Fan J, Fekete A, Firestone B, Flynn J, Green J, Growney JD, Holmqvist M, Hsu M, Jansson D, Jiang L, Kwon P, Liu G, Lombardo F, Lu Q, Majumdar D, Meta C, Perez L, Pu M, Ramsey T, Remiszewski S, Skolnik S, Traebert M, Urban L, Uttamsingh V, Wang P, Whitebread S, Whitehead L, Yan-Neale Y, Yao YM, Zhou L, Atadja P.
Abstract : Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree of pharmacophore homology between these two targets was discovered. This similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels.
Inhibition of human ERG at 30 uM
|
Homo sapiens
|
18.0
%
|
|
Journal : J. Med. Chem.
Title : Optimization of the in vitro cardiac safety of hydroxamate-based histone deacetylase inhibitors.
Year : 2011
Volume : 54
Issue : 13
First Page : 4752
Last Page : 4772
Authors : Shultz MD, Cao X, Chen CH, Cho YS, Davis NR, Eckman J, Fan J, Fekete A, Firestone B, Flynn J, Green J, Growney JD, Holmqvist M, Hsu M, Jansson D, Jiang L, Kwon P, Liu G, Lombardo F, Lu Q, Majumdar D, Meta C, Perez L, Pu M, Ramsey T, Remiszewski S, Skolnik S, Traebert M, Urban L, Uttamsingh V, Wang P, Whitebread S, Whitehead L, Yan-Neale Y, Yao YM, Zhou L, Atadja P.
Abstract : Histone deacetylase (HDAC) inhibitors have shown promise in treating various forms of cancer. However, many HDAC inhibitors from diverse structural classes have been associated with QT prolongation in humans. Inhibition of the human ether a-go-go related gene (hERG) channel has been associated with QT prolongation and fatal arrhythmias. To determine if the observed cardiac effects of HDAC inhibitors in humans is due to hERG blockade, a highly potent HDAC inhibitor devoid of hERG activity was required. Starting with dacinostat (LAQ824), a highly potent HDAC inhibitor, we explored the SAR to determine the pharmacophores required for HDAC and hERG inhibition. We disclose here the results of these efforts where a high degree of pharmacophore homology between these two targets was discovered. This similarity prevented traditional strategies for mitigating hERG binding/modulation from being successful and novel approaches for reducing hERG inhibition were required. Using a hERG homology model, two compounds, 11r and 25i, were discovered to be highly efficacious with weak affinity for the hERG and other ion channels.
Inhibition of full length recombinant HDAC1 using Fluor de Lys as substrate by fluorescence assay
|
None
|
63.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile.
Year : 2011
Volume : 54
Issue : 13
First Page : 4694
Last Page : 4720
Authors : Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET.
Abstract : A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Antiproliferative activity against human COLO205 cells after 96 hrs by celltiter 96 assay
|
Homo sapiens
|
700.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile.
Year : 2011
Volume : 54
Issue : 13
First Page : 4694
Last Page : 4720
Authors : Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET.
Abstract : A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Antiproliferative activity against human A2780 cells after 96 hrs by celltiter 96 assay
|
Homo sapiens
|
670.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile.
Year : 2011
Volume : 54
Issue : 13
First Page : 4694
Last Page : 4720
Authors : Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET.
Abstract : A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Antiproliferative activity against human HCT116 cells after 96 hrs by celltiter 96 assay
|
Homo sapiens
|
600.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile.
Year : 2011
Volume : 54
Issue : 13
First Page : 4694
Last Page : 4720
Authors : Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET.
Abstract : A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Antiproliferative activity against human PC3 cells after 96 hrs by celltiter 96 assay
|
Homo sapiens
|
450.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile.
Year : 2011
Volume : 54
Issue : 13
First Page : 4694
Last Page : 4720
Authors : Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET.
Abstract : A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Competitive inhibition of HDAC1 using KI-104 as substrate by fluorescence assay
|
None
|
26.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile.
Year : 2011
Volume : 54
Issue : 13
First Page : 4694
Last Page : 4720
Authors : Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET.
Abstract : A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Competitive inhibition of HDAC2 using KI-104 as substrate by fluorescence assay
|
None
|
22.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile.
Year : 2011
Volume : 54
Issue : 13
First Page : 4694
Last Page : 4720
Authors : Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET.
Abstract : A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Competitive inhibition of HDAC3 using KI-104 as substrate by fluorescence assay
|
None
|
19.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile.
Year : 2011
Volume : 54
Issue : 13
First Page : 4694
Last Page : 4720
Authors : Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET.
Abstract : A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Competitive inhibition of HDAC4 using KI-104 as substrate by fluorescence assay
|
None
|
15.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile.
Year : 2011
Volume : 54
Issue : 13
First Page : 4694
Last Page : 4720
Authors : Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET.
Abstract : A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Competitive inhibition of HDAC5 using KI-104 as substrate by fluorescence assay
|
None
|
25.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile.
Year : 2011
Volume : 54
Issue : 13
First Page : 4694
Last Page : 4720
Authors : Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET.
Abstract : A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Competitive inhibition of HDAC6 using KI-104 as substrate by fluorescence assay
|
None
|
10.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile.
Year : 2011
Volume : 54
Issue : 13
First Page : 4694
Last Page : 4720
Authors : Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET.
Abstract : A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Competitive inhibition of HDAC7 using KI-104 as substrate by fluorescence assay
|
None
|
51.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile.
Year : 2011
Volume : 54
Issue : 13
First Page : 4694
Last Page : 4720
Authors : Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET.
Abstract : A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Competitive inhibition of HDAC8 using KI-104 as substrate by fluorescence assay
|
None
|
22.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile.
Year : 2011
Volume : 54
Issue : 13
First Page : 4694
Last Page : 4720
Authors : Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET.
Abstract : A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Competitive inhibition of HDAC9 using KI-104 as substrate by fluorescence assay
|
None
|
24.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile.
Year : 2011
Volume : 54
Issue : 13
First Page : 4694
Last Page : 4720
Authors : Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET.
Abstract : A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Competitive inhibition of HDAC10 using KI-104 as substrate by fluorescence assay
|
None
|
59.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile.
Year : 2011
Volume : 54
Issue : 13
First Page : 4694
Last Page : 4720
Authors : Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET.
Abstract : A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Competitive inhibition of HDAC11 using KI-104 as substrate by fluorescence assay
|
None
|
27.0
nM
|
|
Journal : J. Med. Chem.
Title : Discovery of (2E)-3-{2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl}-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile.
Year : 2011
Volume : 54
Issue : 13
First Page : 4694
Last Page : 4720
Authors : Wang H, Yu N, Chen D, Lee KC, Lye PL, Chang JW, Deng W, Ng MC, Lu T, Khoo ML, Poulsen A, Sangthongpitag K, Wu X, Hu C, Goh KC, Wang X, Fang L, Goh KL, Khng HH, Goh SK, Yeo P, Liu X, Bonday Z, Wood JM, Dymock BW, Kantharaj E, Sun ET.
Abstract : A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Inhibition of HDAC in human HeLa cells using Fluor de Lys as substrate by fluorescence assay
|
Homo sapiens
|
27.0
nM
|
|
Journal : Bioorg. Med. Chem. Lett.
Title : Design, synthesis and biological evaluation of indeno[1,2-d]thiazole derivatives as potent histone deacetylase inhibitors.
Year : 2013
Volume : 23
Issue : 11
First Page : 3200
Last Page : 3203
Authors : Zhou M, Ning C, Liu R, He Y, Yu N.
Abstract : Novel indeno[1,2-d]thiazole hydroxamic acids were designed, synthesized, and evaluated for histone deacetylases (HDACs) inhibition and antiproliferative activities on tumor cell lines. Most of the tested compounds exhibited HDAC inhibition and antiproliferative activity against both MCF7 and HCT116 cells with GI50 values in the sub-micromolar range. Among them, compound 6o showed good inhibitory activity against pan-HDAC with IC50 value of 0.14 μM and significant growth inhibition on MCF7 and HCT116 cells with GI50 values of 0.869 and 0.535 μM, respectively.
Inhibition of HDAC in human HeLa cells nuclear extracts incubated for 30 mins by fluorescent assay
|
Homo sapiens
|
26.4
nM
|
|
Journal : Eur. J. Med. Chem.
Title : Indole-3-ethylsulfamoylphenylacrylamides: potent histone deacetylase inhibitors with anti-inflammatory activity.
Year : 2014
Volume : 85
First Page : 468
Last Page : 479
Authors : Mehndiratta S, Hsieh YL, Liu YM, Wang AW, Lee HY, Liang LY, Kumar S, Teng CM, Yang CR, Liou JP.
Abstract : A series of 2-methyl-1H-indol-3-ethylsulfamoylphenylacrylamides based on LBH589-PXD101 core have been synthesized and evaluated for their histone deacetylase (HDAC) inhibitory and anti-inflammatory activity. In vitro, compounds 9-12 show 2.6-fold better HDAC inhibition and 3-fold better IL-6 suppression compared to LBH589·HCl (1·HCl). Furthermore, these compounds did not show apparent cell viability suppression on macrophages while in contrast, treatment with 1·HCl resulted in significant reduction in cell viability as demonstrated by an MTT assay. Repressed expression of iNOS, COX-2 and reduced phosphorylation of p65 revealed the inhibitory effect of these analogues on inflammatory mediator release which is related to inhibited NF-ĸB signals. (N-Hydroxy-3-{3-[2-(2-methyl-1H-indol-3-yl)-ethylsulfamoyl]-phenyl}-acrylamide) (9), exhibited ability superior to that of 1·HCl, was able to reduce carrageenan-induced acute inflammation in an animal model. Compounds 9-12 have potential anti-inflammatory activity and compound 9 can serve as lead compound for further development.
Anti-inflammatory activity in LPS-stimulated mouse RAW264.7 cells assessed as suppression of IL6 production pre-incubated for 1 hr before LPS stimulation for 24 hrs by ELISA method
|
Mus musculus
|
0.059
nM
|
|
Journal : Eur. J. Med. Chem.
Title : Indole-3-ethylsulfamoylphenylacrylamides: potent histone deacetylase inhibitors with anti-inflammatory activity.
Year : 2014
Volume : 85
First Page : 468
Last Page : 479
Authors : Mehndiratta S, Hsieh YL, Liu YM, Wang AW, Lee HY, Liang LY, Kumar S, Teng CM, Yang CR, Liou JP.
Abstract : A series of 2-methyl-1H-indol-3-ethylsulfamoylphenylacrylamides based on LBH589-PXD101 core have been synthesized and evaluated for their histone deacetylase (HDAC) inhibitory and anti-inflammatory activity. In vitro, compounds 9-12 show 2.6-fold better HDAC inhibition and 3-fold better IL-6 suppression compared to LBH589·HCl (1·HCl). Furthermore, these compounds did not show apparent cell viability suppression on macrophages while in contrast, treatment with 1·HCl resulted in significant reduction in cell viability as demonstrated by an MTT assay. Repressed expression of iNOS, COX-2 and reduced phosphorylation of p65 revealed the inhibitory effect of these analogues on inflammatory mediator release which is related to inhibited NF-ĸB signals. (N-Hydroxy-3-{3-[2-(2-methyl-1H-indol-3-yl)-ethylsulfamoyl]-phenyl}-acrylamide) (9), exhibited ability superior to that of 1·HCl, was able to reduce carrageenan-induced acute inflammation in an animal model. Compounds 9-12 have potential anti-inflammatory activity and compound 9 can serve as lead compound for further development.
Antiviral activity against HCV genotype 1b infected in human Huh7 cells after 3 days by luciferase reporter gene assay
|
Hepatitis C virus subtype 1b
|
120.0
nM
|
|
Journal : J. Med. Chem.
Title : Hydroxamic acids block replication of hepatitis C virus.
Year : 2015
Volume : 58
Issue : 2
First Page : 785
Last Page : 800
Authors : Ai T, Xu Y, Qiu L, Geraghty RJ, Chen L.
Abstract : Intrigued by the role of protein acetylation in hepatitis C virus (HCV) replication, we tested known histone deacetylase (HDAC) inhibitors and a focused library of structurally simple hydroxamic acids for inhibition of a HCV subgenomic replicon. While known HDAC inhibitors with varied inhibitory profiles proved to be either relatively toxic or ineffective, structure-activity relationship (SAR) studies on cinnamic hydroxamic acid and benzo[b]thiophen-2-hydroxamic acid gave rise to compounds 22 and 53, which showed potent and selective anti-HCV activity and therefore are promising starting points for further structural optimization and mechanistic studies.
Inhibition of human HDAC1
|
Homo sapiens
|
0.9
nM
|
|
Journal : Bioorg. Med. Chem.
Title : Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT).
Year : 2015
Volume : 23
Issue : 16
First Page : 5151
Last Page : 5155
Authors : Carrillo AK, Guiguemde WA, Guy RK.
Abstract : Two of the histone deacetylases, TbDAC1 and TbDAC3, have been reported to be essential genes in trypanosomes. Therefore, we tested the activity of a panel of human histone deacetylase inhibitors (HDACi) for their ability to block proliferation of Trypanosoma brucei brucei. Among the HDACi's, the hydroxamic acid derivatives panobinostat and belinostat exhibited potency that appeared to make them viable candidates for development due to their reported pharmacokinetic characteristics. However, cellular pharmacodynamic analysis demonstrated that these drugs were unable to kill cultured parasites at exposures seen in patients at their tolerated doses and additionally failed to show any synergistic effects in combination with pentamidine, suramin, melarsoprol, or nifurtimox. Analysis of the potency of the entire HDACi panel revealed no correlations between potency against any human HDAC isoform and inhibition of T. brucei proliferation, suggesting that the trypanosome histone deacetylases possess a unique specificity. These studies confirmed that HDAC inhibitors have potential as leads against human African trypanosomiasis but that none of the current clinical candidates can be directly repurposed. Therefore, development of HDACi's with appropriate specificity and potency may be a viable route to a new class of anti-trypanosomal drugs.
Inhibition of human HDAC2
|
Homo sapiens
|
0.9
nM
|
|
Journal : Bioorg. Med. Chem.
Title : Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT).
Year : 2015
Volume : 23
Issue : 16
First Page : 5151
Last Page : 5155
Authors : Carrillo AK, Guiguemde WA, Guy RK.
Abstract : Two of the histone deacetylases, TbDAC1 and TbDAC3, have been reported to be essential genes in trypanosomes. Therefore, we tested the activity of a panel of human histone deacetylase inhibitors (HDACi) for their ability to block proliferation of Trypanosoma brucei brucei. Among the HDACi's, the hydroxamic acid derivatives panobinostat and belinostat exhibited potency that appeared to make them viable candidates for development due to their reported pharmacokinetic characteristics. However, cellular pharmacodynamic analysis demonstrated that these drugs were unable to kill cultured parasites at exposures seen in patients at their tolerated doses and additionally failed to show any synergistic effects in combination with pentamidine, suramin, melarsoprol, or nifurtimox. Analysis of the potency of the entire HDACi panel revealed no correlations between potency against any human HDAC isoform and inhibition of T. brucei proliferation, suggesting that the trypanosome histone deacetylases possess a unique specificity. These studies confirmed that HDAC inhibitors have potential as leads against human African trypanosomiasis but that none of the current clinical candidates can be directly repurposed. Therefore, development of HDACi's with appropriate specificity and potency may be a viable route to a new class of anti-trypanosomal drugs.
Inhibition of human HDAC3
|
Homo sapiens
|
1.5
nM
|
|
Journal : Bioorg. Med. Chem.
Title : Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT).
Year : 2015
Volume : 23
Issue : 16
First Page : 5151
Last Page : 5155
Authors : Carrillo AK, Guiguemde WA, Guy RK.
Abstract : Two of the histone deacetylases, TbDAC1 and TbDAC3, have been reported to be essential genes in trypanosomes. Therefore, we tested the activity of a panel of human histone deacetylase inhibitors (HDACi) for their ability to block proliferation of Trypanosoma brucei brucei. Among the HDACi's, the hydroxamic acid derivatives panobinostat and belinostat exhibited potency that appeared to make them viable candidates for development due to their reported pharmacokinetic characteristics. However, cellular pharmacodynamic analysis demonstrated that these drugs were unable to kill cultured parasites at exposures seen in patients at their tolerated doses and additionally failed to show any synergistic effects in combination with pentamidine, suramin, melarsoprol, or nifurtimox. Analysis of the potency of the entire HDACi panel revealed no correlations between potency against any human HDAC isoform and inhibition of T. brucei proliferation, suggesting that the trypanosome histone deacetylases possess a unique specificity. These studies confirmed that HDAC inhibitors have potential as leads against human African trypanosomiasis but that none of the current clinical candidates can be directly repurposed. Therefore, development of HDACi's with appropriate specificity and potency may be a viable route to a new class of anti-trypanosomal drugs.
Inhibition of human HDAC8
|
Homo sapiens
|
25.0
nM
|
|
Journal : Bioorg. Med. Chem.
Title : Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT).
Year : 2015
Volume : 23
Issue : 16
First Page : 5151
Last Page : 5155
Authors : Carrillo AK, Guiguemde WA, Guy RK.
Abstract : Two of the histone deacetylases, TbDAC1 and TbDAC3, have been reported to be essential genes in trypanosomes. Therefore, we tested the activity of a panel of human histone deacetylase inhibitors (HDACi) for their ability to block proliferation of Trypanosoma brucei brucei. Among the HDACi's, the hydroxamic acid derivatives panobinostat and belinostat exhibited potency that appeared to make them viable candidates for development due to their reported pharmacokinetic characteristics. However, cellular pharmacodynamic analysis demonstrated that these drugs were unable to kill cultured parasites at exposures seen in patients at their tolerated doses and additionally failed to show any synergistic effects in combination with pentamidine, suramin, melarsoprol, or nifurtimox. Analysis of the potency of the entire HDACi panel revealed no correlations between potency against any human HDAC isoform and inhibition of T. brucei proliferation, suggesting that the trypanosome histone deacetylases possess a unique specificity. These studies confirmed that HDAC inhibitors have potential as leads against human African trypanosomiasis but that none of the current clinical candidates can be directly repurposed. Therefore, development of HDACi's with appropriate specificity and potency may be a viable route to a new class of anti-trypanosomal drugs.
Inhibition of human HDAC4
|
Homo sapiens
|
380.0
nM
|
|
Journal : Bioorg. Med. Chem.
Title : Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT).
Year : 2015
Volume : 23
Issue : 16
First Page : 5151
Last Page : 5155
Authors : Carrillo AK, Guiguemde WA, Guy RK.
Abstract : Two of the histone deacetylases, TbDAC1 and TbDAC3, have been reported to be essential genes in trypanosomes. Therefore, we tested the activity of a panel of human histone deacetylase inhibitors (HDACi) for their ability to block proliferation of Trypanosoma brucei brucei. Among the HDACi's, the hydroxamic acid derivatives panobinostat and belinostat exhibited potency that appeared to make them viable candidates for development due to their reported pharmacokinetic characteristics. However, cellular pharmacodynamic analysis demonstrated that these drugs were unable to kill cultured parasites at exposures seen in patients at their tolerated doses and additionally failed to show any synergistic effects in combination with pentamidine, suramin, melarsoprol, or nifurtimox. Analysis of the potency of the entire HDACi panel revealed no correlations between potency against any human HDAC isoform and inhibition of T. brucei proliferation, suggesting that the trypanosome histone deacetylases possess a unique specificity. These studies confirmed that HDAC inhibitors have potential as leads against human African trypanosomiasis but that none of the current clinical candidates can be directly repurposed. Therefore, development of HDACi's with appropriate specificity and potency may be a viable route to a new class of anti-trypanosomal drugs.
Inhibition of human HDAC5
|
Homo sapiens
|
175.0
nM
|
|
Journal : Bioorg. Med. Chem.
Title : Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT).
Year : 2015
Volume : 23
Issue : 16
First Page : 5151
Last Page : 5155
Authors : Carrillo AK, Guiguemde WA, Guy RK.
Abstract : Two of the histone deacetylases, TbDAC1 and TbDAC3, have been reported to be essential genes in trypanosomes. Therefore, we tested the activity of a panel of human histone deacetylase inhibitors (HDACi) for their ability to block proliferation of Trypanosoma brucei brucei. Among the HDACi's, the hydroxamic acid derivatives panobinostat and belinostat exhibited potency that appeared to make them viable candidates for development due to their reported pharmacokinetic characteristics. However, cellular pharmacodynamic analysis demonstrated that these drugs were unable to kill cultured parasites at exposures seen in patients at their tolerated doses and additionally failed to show any synergistic effects in combination with pentamidine, suramin, melarsoprol, or nifurtimox. Analysis of the potency of the entire HDACi panel revealed no correlations between potency against any human HDAC isoform and inhibition of T. brucei proliferation, suggesting that the trypanosome histone deacetylases possess a unique specificity. These studies confirmed that HDAC inhibitors have potential as leads against human African trypanosomiasis but that none of the current clinical candidates can be directly repurposed. Therefore, development of HDACi's with appropriate specificity and potency may be a viable route to a new class of anti-trypanosomal drugs.
Inhibition of human HDAC7
|
Homo sapiens
|
75.0
nM
|
|
Journal : Bioorg. Med. Chem.
Title : Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT).
Year : 2015
Volume : 23
Issue : 16
First Page : 5151
Last Page : 5155
Authors : Carrillo AK, Guiguemde WA, Guy RK.
Abstract : Two of the histone deacetylases, TbDAC1 and TbDAC3, have been reported to be essential genes in trypanosomes. Therefore, we tested the activity of a panel of human histone deacetylase inhibitors (HDACi) for their ability to block proliferation of Trypanosoma brucei brucei. Among the HDACi's, the hydroxamic acid derivatives panobinostat and belinostat exhibited potency that appeared to make them viable candidates for development due to their reported pharmacokinetic characteristics. However, cellular pharmacodynamic analysis demonstrated that these drugs were unable to kill cultured parasites at exposures seen in patients at their tolerated doses and additionally failed to show any synergistic effects in combination with pentamidine, suramin, melarsoprol, or nifurtimox. Analysis of the potency of the entire HDACi panel revealed no correlations between potency against any human HDAC isoform and inhibition of T. brucei proliferation, suggesting that the trypanosome histone deacetylases possess a unique specificity. These studies confirmed that HDAC inhibitors have potential as leads against human African trypanosomiasis but that none of the current clinical candidates can be directly repurposed. Therefore, development of HDACi's with appropriate specificity and potency may be a viable route to a new class of anti-trypanosomal drugs.
Inhibition of human HDAC9
|
Homo sapiens
|
250.0
nM
|
|
Journal : Bioorg. Med. Chem.
Title : Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT).
Year : 2015
Volume : 23
Issue : 16
First Page : 5151
Last Page : 5155
Authors : Carrillo AK, Guiguemde WA, Guy RK.
Abstract : Two of the histone deacetylases, TbDAC1 and TbDAC3, have been reported to be essential genes in trypanosomes. Therefore, we tested the activity of a panel of human histone deacetylase inhibitors (HDACi) for their ability to block proliferation of Trypanosoma brucei brucei. Among the HDACi's, the hydroxamic acid derivatives panobinostat and belinostat exhibited potency that appeared to make them viable candidates for development due to their reported pharmacokinetic characteristics. However, cellular pharmacodynamic analysis demonstrated that these drugs were unable to kill cultured parasites at exposures seen in patients at their tolerated doses and additionally failed to show any synergistic effects in combination with pentamidine, suramin, melarsoprol, or nifurtimox. Analysis of the potency of the entire HDACi panel revealed no correlations between potency against any human HDAC isoform and inhibition of T. brucei proliferation, suggesting that the trypanosome histone deacetylases possess a unique specificity. These studies confirmed that HDAC inhibitors have potential as leads against human African trypanosomiasis but that none of the current clinical candidates can be directly repurposed. Therefore, development of HDACi's with appropriate specificity and potency may be a viable route to a new class of anti-trypanosomal drugs.
Inhibition of human HDAC6
|
Homo sapiens
|
1.6
nM
|
|
Journal : Bioorg. Med. Chem.
Title : Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT).
Year : 2015
Volume : 23
Issue : 16
First Page : 5151
Last Page : 5155
Authors : Carrillo AK, Guiguemde WA, Guy RK.
Abstract : Two of the histone deacetylases, TbDAC1 and TbDAC3, have been reported to be essential genes in trypanosomes. Therefore, we tested the activity of a panel of human histone deacetylase inhibitors (HDACi) for their ability to block proliferation of Trypanosoma brucei brucei. Among the HDACi's, the hydroxamic acid derivatives panobinostat and belinostat exhibited potency that appeared to make them viable candidates for development due to their reported pharmacokinetic characteristics. However, cellular pharmacodynamic analysis demonstrated that these drugs were unable to kill cultured parasites at exposures seen in patients at their tolerated doses and additionally failed to show any synergistic effects in combination with pentamidine, suramin, melarsoprol, or nifurtimox. Analysis of the potency of the entire HDACi panel revealed no correlations between potency against any human HDAC isoform and inhibition of T. brucei proliferation, suggesting that the trypanosome histone deacetylases possess a unique specificity. These studies confirmed that HDAC inhibitors have potential as leads against human African trypanosomiasis but that none of the current clinical candidates can be directly repurposed. Therefore, development of HDACi's with appropriate specificity and potency may be a viable route to a new class of anti-trypanosomal drugs.
Inhibition of C-terminal His/FLAG-tagged full length recombinant human HDAC1 expressed in baculovirus expression system assessed as release of 7-amino-4-methylcoumarin by fluorogenic assay
|
Homo sapiens
|
48.0
nM
|
|
Journal : Eur J Med Chem
Title : 2-(Phenylsulfonyl)quinoline N-hydroxyacrylamides as potent anticancer agents inhibiting histone deacetylase.
Year : 2016
Volume : 122
First Page : 92
Last Page : 101
Authors : Lee HY, Chang CY, Su CJ, Huang HL, Mehndiratta S, Chao YH, Hsu CM, Kumar S, Sung TY, Huang YZ, Li YH, Yang CR, Liou JP.
Abstract : This study reports the design and synthesis of 2-(phenylsulfonyl)quinoline N-hydroxyacrylamides (8a-k). Structure-activity relationship studies focusing on regio-effect of N-hydroxyacrylamide moiety and influence of the sulfonyl linker revealed that N-hydroxy-3-[3-(quinoline-2-sulfonyl)-phenyl]-acrylamide (8f) showed remarkable enzymatic and cellular activity. The GI50 values of 8f for HL-60, HCT116, PC-3, and A549 cells were found to be 0.29, 0.08, 0.15, and 0.27 μM, respectively. The compounds are therefore more potent than FDA approved PXD-101 and SAHA. They also have an effect on the acetylation degree of histone H3 and α-tubulin. In in vivo studies, 8f showed marked inhibition of the growth of HCT116 xenografts.
Inhibition of full length recombinant human HDAC2 expressed in baculovirus expression system assessed as release of 7-amino-4-methylcoumarin by fluorogenic assay
|
Homo sapiens
|
49.0
nM
|
|
Journal : Eur J Med Chem
Title : 2-(Phenylsulfonyl)quinoline N-hydroxyacrylamides as potent anticancer agents inhibiting histone deacetylase.
Year : 2016
Volume : 122
First Page : 92
Last Page : 101
Authors : Lee HY, Chang CY, Su CJ, Huang HL, Mehndiratta S, Chao YH, Hsu CM, Kumar S, Sung TY, Huang YZ, Li YH, Yang CR, Liou JP.
Abstract : This study reports the design and synthesis of 2-(phenylsulfonyl)quinoline N-hydroxyacrylamides (8a-k). Structure-activity relationship studies focusing on regio-effect of N-hydroxyacrylamide moiety and influence of the sulfonyl linker revealed that N-hydroxy-3-[3-(quinoline-2-sulfonyl)-phenyl]-acrylamide (8f) showed remarkable enzymatic and cellular activity. The GI50 values of 8f for HL-60, HCT116, PC-3, and A549 cells were found to be 0.29, 0.08, 0.15, and 0.27 μM, respectively. The compounds are therefore more potent than FDA approved PXD-101 and SAHA. They also have an effect on the acetylation degree of histone H3 and α-tubulin. In in vivo studies, 8f showed marked inhibition of the growth of HCT116 xenografts.
Inhibition of full length recombinant human HDAC6 expressed in baculovirus expression system assessed as release of 7-amino-4-methylcoumarin by fluorogenic assay
|
Homo sapiens
|
50.0
nM
|
|
Journal : Eur J Med Chem
Title : 2-(Phenylsulfonyl)quinoline N-hydroxyacrylamides as potent anticancer agents inhibiting histone deacetylase.
Year : 2016
Volume : 122
First Page : 92
Last Page : 101
Authors : Lee HY, Chang CY, Su CJ, Huang HL, Mehndiratta S, Chao YH, Hsu CM, Kumar S, Sung TY, Huang YZ, Li YH, Yang CR, Liou JP.
Abstract : This study reports the design and synthesis of 2-(phenylsulfonyl)quinoline N-hydroxyacrylamides (8a-k). Structure-activity relationship studies focusing on regio-effect of N-hydroxyacrylamide moiety and influence of the sulfonyl linker revealed that N-hydroxy-3-[3-(quinoline-2-sulfonyl)-phenyl]-acrylamide (8f) showed remarkable enzymatic and cellular activity. The GI50 values of 8f for HL-60, HCT116, PC-3, and A549 cells were found to be 0.29, 0.08, 0.15, and 0.27 μM, respectively. The compounds are therefore more potent than FDA approved PXD-101 and SAHA. They also have an effect on the acetylation degree of histone H3 and α-tubulin. In in vivo studies, 8f showed marked inhibition of the growth of HCT116 xenografts.
Inhibition of His-tagged full length recombinant human HDAC8 expressed in baculovirus expression system assessed as release of 7-amino-4-methylcoumarin by fluorogenic assay
|
Homo sapiens
|
200.0
nM
|
|
Journal : Eur J Med Chem
Title : 2-(Phenylsulfonyl)quinoline N-hydroxyacrylamides as potent anticancer agents inhibiting histone deacetylase.
Year : 2016
Volume : 122
First Page : 92
Last Page : 101
Authors : Lee HY, Chang CY, Su CJ, Huang HL, Mehndiratta S, Chao YH, Hsu CM, Kumar S, Sung TY, Huang YZ, Li YH, Yang CR, Liou JP.
Abstract : This study reports the design and synthesis of 2-(phenylsulfonyl)quinoline N-hydroxyacrylamides (8a-k). Structure-activity relationship studies focusing on regio-effect of N-hydroxyacrylamide moiety and influence of the sulfonyl linker revealed that N-hydroxy-3-[3-(quinoline-2-sulfonyl)-phenyl]-acrylamide (8f) showed remarkable enzymatic and cellular activity. The GI50 values of 8f for HL-60, HCT116, PC-3, and A549 cells were found to be 0.29, 0.08, 0.15, and 0.27 μM, respectively. The compounds are therefore more potent than FDA approved PXD-101 and SAHA. They also have an effect on the acetylation degree of histone H3 and α-tubulin. In in vivo studies, 8f showed marked inhibition of the growth of HCT116 xenografts.
Inhibition of recombinant human LTA4H aminopeptidase activity expressed in Escherichia coli BL21 (DE3) pLysS assessed as formation of p-NA from Ala-p-NA at 10 uM preincubated for 10 mins followed by substrate addition measured after 10 mins
|
Homo sapiens
|
50.0
%
|
|
Journal : J Med Chem
Title : Drug Repurposing of Histone Deacetylase Inhibitors That Alleviate Neutrophilic Inflammation in Acute Lung Injury and Idiopathic Pulmonary Fibrosis via Inhibiting Leukotriene A4 Hydrolase and Blocking LTB4 Biosynthesis.
Year : 2017
Volume : 60
Issue : 5
First Page : 1817
Last Page : 1828
Authors : Lu W, Yao X, Ouyang P, Dong N, Wu D, Jiang X, Wu Z, Zhang C, Xu Z, Tang Y, Zou S, Liu M, Li J, Zeng M, Lin P, Cheng F, Huang J.
Abstract : Acute lung injury (ALI) and idiopathic pulmonary fibrosis (IPF) are both serious public health problems with high incidence and mortality rate in adults, and with few drugs available for the efficient treatment in clinic. In this study, we identified that two known histone deacetylase (HDAC) inhibitors, suberanilohydroxamic acid (SAHA, 1) and its analogue 4-(dimethylamino)-N-[7-(hydroxyamino)-7-oxoheptyl]benzamide (2), are effective inhibitors of Leukotriene A4 hydrolase (LTA4H), a key enzyme in the biosynthesis of leukotriene B4 (LTB4), across a panel of 18 HDAC inhibitors, using enzymatic assay, thermofluor assay, and X-ray crystallographic investigation. Importantly, both 1 and 2 markedly diminish early neutrophilic inflammation in mouse models of ALI and IPF under a clinical safety dose. Detailed mechanisms of down-regulation of proinflammatory cytokines by 1 or 2 were determined in vivo. Collectively, 1 and 2 would provide promising agents with well-known clinical safety for potential treatment in patients with ALI and IPF via pharmacologically inhibiting LAT4H and blocking LTB4 biosynthesis.
Inhibition of recombinant human LTA4H Epoxide Hydrolase expressed in Escherichia coli BL21 (DE3) pLysS at 10 uM preincubated for 10 mins followed by addition of LTA4 as substrate measured after 15 mins by reverse-phase HPLC analysis
|
Homo sapiens
|
50.0
%
|
|
Journal : J Med Chem
Title : Drug Repurposing of Histone Deacetylase Inhibitors That Alleviate Neutrophilic Inflammation in Acute Lung Injury and Idiopathic Pulmonary Fibrosis via Inhibiting Leukotriene A4 Hydrolase and Blocking LTB4 Biosynthesis.
Year : 2017
Volume : 60
Issue : 5
First Page : 1817
Last Page : 1828
Authors : Lu W, Yao X, Ouyang P, Dong N, Wu D, Jiang X, Wu Z, Zhang C, Xu Z, Tang Y, Zou S, Liu M, Li J, Zeng M, Lin P, Cheng F, Huang J.
Abstract : Acute lung injury (ALI) and idiopathic pulmonary fibrosis (IPF) are both serious public health problems with high incidence and mortality rate in adults, and with few drugs available for the efficient treatment in clinic. In this study, we identified that two known histone deacetylase (HDAC) inhibitors, suberanilohydroxamic acid (SAHA, 1) and its analogue 4-(dimethylamino)-N-[7-(hydroxyamino)-7-oxoheptyl]benzamide (2), are effective inhibitors of Leukotriene A4 hydrolase (LTA4H), a key enzyme in the biosynthesis of leukotriene B4 (LTB4), across a panel of 18 HDAC inhibitors, using enzymatic assay, thermofluor assay, and X-ray crystallographic investigation. Importantly, both 1 and 2 markedly diminish early neutrophilic inflammation in mouse models of ALI and IPF under a clinical safety dose. Detailed mechanisms of down-regulation of proinflammatory cytokines by 1 or 2 were determined in vivo. Collectively, 1 and 2 would provide promising agents with well-known clinical safety for potential treatment in patients with ALI and IPF via pharmacologically inhibiting LAT4H and blocking LTB4 biosynthesis.
Inhibition of recombinant human full length HDAC2 using Fluor-de-Lys as substrate after 60 mins by spectrofluorimetric analysis
|
Homo sapiens
|
50.0
nM
|
|
Journal : Eur J Med Chem
Title : 4-Indolyl-N-hydroxyphenylacrylamides as potent HDAC class I and IIB inhibitors in vitro and in vivo.
Year : 2017
Volume : 134
First Page : 13
Last Page : 23
Authors : Mehndiratta S, Wang RS, Huang HL, Su CJ, Hsu CM, Wu YW, Pan SL, Liou JP.
Abstract : A series of 4,5-indolyl-N-hydroxyphenylacrylamides, as HDAC inhibitors, has been synthesized and evaluated in vitro and in vivo. 4-Indolyl compounds 13 and 17 functions as potent inhibitors of HDAC1 (IC50 1.28 nM and 1.34 nM) and HDAC 2 (IC50 0.90 and 0.53 nM). N-Hydroxy-3-{4-[2-(1H-indol-4-yl)-ethylsulfamoyl]-phenyl}-acrylamide (13) inhibited the human cancer cell growth of PC3, A549, MDA-MB-231 and AsPC-1 with a GI50 of 0.14, 0.25, 0.32, and 0.24 μM, respectively. In in vivo evaluations bearing prostate PC3 xenografts nude mice model, compound 13 suppressed tumor growth with a tumor growth inhibition (TGI) of 62.2%. Immunohistochemistry of protein expressions, in PC-3 xenograft model indicated elevated acetyl-histone 3 and prominently inhibited HDAC2 protein expressions. Therefore, compound 13 could be a suitable lead for further investigation and the development of selective HDAC 2 inhibitors as potent anti-cancer compounds.
Inhibition of HDAC in human HeLa cell nuclear extract using Ac-Lys(Ac)-pNA as substrate after 30 mins by fluorescence assay
|
Homo sapiens
|
81.0
nM
|
|
Journal : Eur J Med Chem
Title : 4-Indolyl-N-hydroxyphenylacrylamides as potent HDAC class I and IIB inhibitors in vitro and in vivo.
Year : 2017
Volume : 134
First Page : 13
Last Page : 23
Authors : Mehndiratta S, Wang RS, Huang HL, Su CJ, Hsu CM, Wu YW, Pan SL, Liou JP.
Abstract : A series of 4,5-indolyl-N-hydroxyphenylacrylamides, as HDAC inhibitors, has been synthesized and evaluated in vitro and in vivo. 4-Indolyl compounds 13 and 17 functions as potent inhibitors of HDAC1 (IC50 1.28 nM and 1.34 nM) and HDAC 2 (IC50 0.90 and 0.53 nM). N-Hydroxy-3-{4-[2-(1H-indol-4-yl)-ethylsulfamoyl]-phenyl}-acrylamide (13) inhibited the human cancer cell growth of PC3, A549, MDA-MB-231 and AsPC-1 with a GI50 of 0.14, 0.25, 0.32, and 0.24 μM, respectively. In in vivo evaluations bearing prostate PC3 xenografts nude mice model, compound 13 suppressed tumor growth with a tumor growth inhibition (TGI) of 62.2%. Immunohistochemistry of protein expressions, in PC-3 xenograft model indicated elevated acetyl-histone 3 and prominently inhibited HDAC2 protein expressions. Therefore, compound 13 could be a suitable lead for further investigation and the development of selective HDAC 2 inhibitors as potent anti-cancer compounds.
Inhibition of recombinant human full length HDAC1 using Fluor-de-Lys as substrate after 60 mins by spectrofluorimetric analysis
|
Homo sapiens
|
20.0
nM
|
|
Journal : Eur J Med Chem
Title : 4-Indolyl-N-hydroxyphenylacrylamides as potent HDAC class I and IIB inhibitors in vitro and in vivo.
Year : 2017
Volume : 134
First Page : 13
Last Page : 23
Authors : Mehndiratta S, Wang RS, Huang HL, Su CJ, Hsu CM, Wu YW, Pan SL, Liou JP.
Abstract : A series of 4,5-indolyl-N-hydroxyphenylacrylamides, as HDAC inhibitors, has been synthesized and evaluated in vitro and in vivo. 4-Indolyl compounds 13 and 17 functions as potent inhibitors of HDAC1 (IC50 1.28 nM and 1.34 nM) and HDAC 2 (IC50 0.90 and 0.53 nM). N-Hydroxy-3-{4-[2-(1H-indol-4-yl)-ethylsulfamoyl]-phenyl}-acrylamide (13) inhibited the human cancer cell growth of PC3, A549, MDA-MB-231 and AsPC-1 with a GI50 of 0.14, 0.25, 0.32, and 0.24 μM, respectively. In in vivo evaluations bearing prostate PC3 xenografts nude mice model, compound 13 suppressed tumor growth with a tumor growth inhibition (TGI) of 62.2%. Immunohistochemistry of protein expressions, in PC-3 xenograft model indicated elevated acetyl-histone 3 and prominently inhibited HDAC2 protein expressions. Therefore, compound 13 could be a suitable lead for further investigation and the development of selective HDAC 2 inhibitors as potent anti-cancer compounds.
Inhibition of recombinant human full length HDAC6 using Fluor-de-Lys as substrate after 60 mins by spectrofluorimetric analysis
|
Homo sapiens
|
9.85
nM
|
|
Journal : Eur J Med Chem
Title : 4-Indolyl-N-hydroxyphenylacrylamides as potent HDAC class I and IIB inhibitors in vitro and in vivo.
Year : 2017
Volume : 134
First Page : 13
Last Page : 23
Authors : Mehndiratta S, Wang RS, Huang HL, Su CJ, Hsu CM, Wu YW, Pan SL, Liou JP.
Abstract : A series of 4,5-indolyl-N-hydroxyphenylacrylamides, as HDAC inhibitors, has been synthesized and evaluated in vitro and in vivo. 4-Indolyl compounds 13 and 17 functions as potent inhibitors of HDAC1 (IC50 1.28 nM and 1.34 nM) and HDAC 2 (IC50 0.90 and 0.53 nM). N-Hydroxy-3-{4-[2-(1H-indol-4-yl)-ethylsulfamoyl]-phenyl}-acrylamide (13) inhibited the human cancer cell growth of PC3, A549, MDA-MB-231 and AsPC-1 with a GI50 of 0.14, 0.25, 0.32, and 0.24 μM, respectively. In in vivo evaluations bearing prostate PC3 xenografts nude mice model, compound 13 suppressed tumor growth with a tumor growth inhibition (TGI) of 62.2%. Immunohistochemistry of protein expressions, in PC-3 xenograft model indicated elevated acetyl-histone 3 and prominently inhibited HDAC2 protein expressions. Therefore, compound 13 could be a suitable lead for further investigation and the development of selective HDAC 2 inhibitors as potent anti-cancer compounds.
Inhibition of recombinant human full length HDAC8 using Fluor-de-Lys as substrate after 60 mins by spectrofluorimetric analysis
|
Homo sapiens
|
70.0
nM
|
|
Journal : Eur J Med Chem
Title : 4-Indolyl-N-hydroxyphenylacrylamides as potent HDAC class I and IIB inhibitors in vitro and in vivo.
Year : 2017
Volume : 134
First Page : 13
Last Page : 23
Authors : Mehndiratta S, Wang RS, Huang HL, Su CJ, Hsu CM, Wu YW, Pan SL, Liou JP.
Abstract : A series of 4,5-indolyl-N-hydroxyphenylacrylamides, as HDAC inhibitors, has been synthesized and evaluated in vitro and in vivo. 4-Indolyl compounds 13 and 17 functions as potent inhibitors of HDAC1 (IC50 1.28 nM and 1.34 nM) and HDAC 2 (IC50 0.90 and 0.53 nM). N-Hydroxy-3-{4-[2-(1H-indol-4-yl)-ethylsulfamoyl]-phenyl}-acrylamide (13) inhibited the human cancer cell growth of PC3, A549, MDA-MB-231 and AsPC-1 with a GI50 of 0.14, 0.25, 0.32, and 0.24 μM, respectively. In in vivo evaluations bearing prostate PC3 xenografts nude mice model, compound 13 suppressed tumor growth with a tumor growth inhibition (TGI) of 62.2%. Immunohistochemistry of protein expressions, in PC-3 xenograft model indicated elevated acetyl-histone 3 and prominently inhibited HDAC2 protein expressions. Therefore, compound 13 could be a suitable lead for further investigation and the development of selective HDAC 2 inhibitors as potent anti-cancer compounds.
Inhibition of BRD4 (unknown origin)
|
Homo sapiens
|
27.0
nM
|
|
Journal : Bioorg Med Chem Lett
Title : Structure-based design, synthesis and in vitro antiproliferative effects studies of novel dual BRD4/HDAC inhibitors.
Year : 2017
Volume : 27
Issue : 17
First Page : 4051
Last Page : 4055
Authors : Shao M, He L, Zheng L, Huang L, Zhou Y, Wang T, Chen Y, Shen M, Wang F, Yang Z, Chen L.
Abstract : Histone acetylation marks play important roles in controlling gene expressions and are removed by histone deacetylases (HDACs). These marks are read by bromodomain and extra-terminal (BET) proteins, whose targeted inhibitors are under clinical investigation. BET and HDAC inhibitors have been demonstrated to be synergistically killing in Mycinduced murine lymphoma. Herein, we combine the inhibitory activities of BET and HDAC into one molecule through structure-based design method and evaluate its function. The majority of these synthesized compounds showed inhibitory activity against second bromdomains(BRD) of BRD4 and HDAC1. Among them, 16ae presented anti-proliferative effects against human acute myelogenous leukemia (AML) cell lines in vitro, and 16ae is confirmed to reduce the expression of Myc by Western blot analysis. Those results indicated that 16ae is a potent dual BRD4/HDAC inhibitor and deserves further investigation.
Inhibition of HDAC1 in Plasmodium falciparum 3D7 nuclear extract using Ac-RGK(Ac)-AMC fluorogenic peptide as substrate preincubated for 1 hr followed by substrate addition measured after 10 min by fluorescence assay
|
Plasmodium falciparum 3D7
|
214.7
nM
|
|
Journal : J Med Chem
Title : Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives.
Year : 2017
Volume : 60
Issue : 12
First Page : 4780
Last Page : 4804
Authors : Hailu GS, Robaa D, Forgione M, Sippl W, Rotili D, Mai A.
Abstract : Current therapies for human parasite infections rely on a few drugs, most of which have severe side effects, and their helpfulness is being seriously compromised by the drug resistance problem. Globally, this is pushing discovery research of antiparasitic drugs toward new agents endowed with new mechanisms of action. By using a "drug repurposing" strategy, histone deacetylase inhibitors (HDACi), which are presently clinically approved for cancer use, are now under investigation for various parasite infections. Because parasitic Zn2+- and NAD+-dependent HDACs play crucial roles in the modulation of parasite gene expression and many of them are pro-survival for several parasites under various conditions, they are now emerging as novel potential antiparasitic targets. This Perspective summarizes the state of knowledge of HDACi (both class I/II HDACi and sirtuin inhibitors) targeted to the main human parasitic diseases (schistosomiasis, malaria, trypanosomiasis, leishmaniasis, and toxoplasmosis) and provides visions into the main issues that challenge their development as antiparasitic agents.
Inhibition of recombinant HDAC1 in recombinant Plasmodium falciparum at 1 uM using Ac-RGK(Ac)-AMC fluorogenic peptide as substrate preincubated for 1 hr followed by substrate addition measured after 10 min by fluorescence assay
|
Plasmodium falciparum
|
78.5
%
|
|
Journal : J Med Chem
Title : Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives.
Year : 2017
Volume : 60
Issue : 12
First Page : 4780
Last Page : 4804
Authors : Hailu GS, Robaa D, Forgione M, Sippl W, Rotili D, Mai A.
Abstract : Current therapies for human parasite infections rely on a few drugs, most of which have severe side effects, and their helpfulness is being seriously compromised by the drug resistance problem. Globally, this is pushing discovery research of antiparasitic drugs toward new agents endowed with new mechanisms of action. By using a "drug repurposing" strategy, histone deacetylase inhibitors (HDACi), which are presently clinically approved for cancer use, are now under investigation for various parasite infections. Because parasitic Zn2+- and NAD+-dependent HDACs play crucial roles in the modulation of parasite gene expression and many of them are pro-survival for several parasites under various conditions, they are now emerging as novel potential antiparasitic targets. This Perspective summarizes the state of knowledge of HDACi (both class I/II HDACi and sirtuin inhibitors) targeted to the main human parasitic diseases (schistosomiasis, malaria, trypanosomiasis, leishmaniasis, and toxoplasmosis) and provides visions into the main issues that challenge their development as antiparasitic agents.
Antimalarial activity against Plasmodium falciparum infected in human erythrocytes preincubated for 48 hrs followed by [3H]-hypoxanthine addition measured after 24 hrs by scintillation counting assay
|
Plasmodium falciparum
|
60.0
nM
|
|
Journal : J Med Chem
Title : Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives.
Year : 2017
Volume : 60
Issue : 12
First Page : 4780
Last Page : 4804
Authors : Hailu GS, Robaa D, Forgione M, Sippl W, Rotili D, Mai A.
Abstract : Current therapies for human parasite infections rely on a few drugs, most of which have severe side effects, and their helpfulness is being seriously compromised by the drug resistance problem. Globally, this is pushing discovery research of antiparasitic drugs toward new agents endowed with new mechanisms of action. By using a "drug repurposing" strategy, histone deacetylase inhibitors (HDACi), which are presently clinically approved for cancer use, are now under investigation for various parasite infections. Because parasitic Zn2+- and NAD+-dependent HDACs play crucial roles in the modulation of parasite gene expression and many of them are pro-survival for several parasites under various conditions, they are now emerging as novel potential antiparasitic targets. This Perspective summarizes the state of knowledge of HDACi (both class I/II HDACi and sirtuin inhibitors) targeted to the main human parasitic diseases (schistosomiasis, malaria, trypanosomiasis, leishmaniasis, and toxoplasmosis) and provides visions into the main issues that challenge their development as antiparasitic agents.
Inhibition of HDAC1/2 in human HeLa nuclear extract using Boc-Lys(acetyl)-AMC as substrate preincubated for 5 mins followed by substrate addition measured after 30 mins by fluorescence assay
|
Homo sapiens
|
25.0
nM
|
|
Journal : Eur J Med Chem
Title : Discovery of meta-sulfamoyl N-hydroxybenzamides as HDAC8 selective inhibitors.
Year : 2018
Volume : 150
First Page : 282
Last Page : 291
Authors : Zhao C, Zang J, Ding Q, Inks ES, Xu W, Chou CJ, Zhang Y.
Abstract : In the past decade, although research and development of histone deacetylase (HDAC) inhibitors as therapeutic agents have achieved great accomplishments, especially in oncology field, there is still an urgent need for the discovery of isoform-selective HDAC inhibitors considering the side effects caused by nonselective HDAC inhibitors. HDAC8, a unique class I zinc-dependent HDAC, is becoming a potential target in cancer and other diseases. In the current study, a novel series of N-hydroxy-3-sulfamoylbenzamide-based HDAC8 selective inhibitors (12a-12p) were designed and synthesized, among which compounds 12a, 12b and 12c exhibited potent HDAC8 inhibition with two-digit nanomolar IC50 values, and considerable selectivity over HDAC2 (>180-fold) and HDAC6 (∼30-fold) which was confirmed by western blot analysis. It is worth noting that 12a, 12b and 12c displayed highly selective anti-proliferative activity to T-cell leukemia cell lines Jurkat, Molt-4 and neuroblastoma cell line SK-N-BE-(2). Such selective cytotoxicity was also observed in the well-known HDAC8 selective inhibitor PCI-34051 but not in the pan-HDAC inhibitors SAHA and PXD101, indicating that HDAC8 selective inhibitor should have preferable benefit-risk profile in comparison with pan-HDAC inhibitor. Finally, the HDAC8 selectivity of 12a, 12b and 12c was rationalized by molecular docking study.
Antiproliferative activity against human Jurkat cells after 48 hrs by MTT assay
|
Homo sapiens
|
70.0
nM
|
|
Journal : Eur J Med Chem
Title : Discovery of meta-sulfamoyl N-hydroxybenzamides as HDAC8 selective inhibitors.
Year : 2018
Volume : 150
First Page : 282
Last Page : 291
Authors : Zhao C, Zang J, Ding Q, Inks ES, Xu W, Chou CJ, Zhang Y.
Abstract : In the past decade, although research and development of histone deacetylase (HDAC) inhibitors as therapeutic agents have achieved great accomplishments, especially in oncology field, there is still an urgent need for the discovery of isoform-selective HDAC inhibitors considering the side effects caused by nonselective HDAC inhibitors. HDAC8, a unique class I zinc-dependent HDAC, is becoming a potential target in cancer and other diseases. In the current study, a novel series of N-hydroxy-3-sulfamoylbenzamide-based HDAC8 selective inhibitors (12a-12p) were designed and synthesized, among which compounds 12a, 12b and 12c exhibited potent HDAC8 inhibition with two-digit nanomolar IC50 values, and considerable selectivity over HDAC2 (>180-fold) and HDAC6 (∼30-fold) which was confirmed by western blot analysis. It is worth noting that 12a, 12b and 12c displayed highly selective anti-proliferative activity to T-cell leukemia cell lines Jurkat, Molt-4 and neuroblastoma cell line SK-N-BE-(2). Such selective cytotoxicity was also observed in the well-known HDAC8 selective inhibitor PCI-34051 but not in the pan-HDAC inhibitors SAHA and PXD101, indicating that HDAC8 selective inhibitor should have preferable benefit-risk profile in comparison with pan-HDAC inhibitor. Finally, the HDAC8 selectivity of 12a, 12b and 12c was rationalized by molecular docking study.
Antiproliferative activity against human MOLT4 cells after 48 hrs by MTT assay
|
Homo sapiens
|
140.0
nM
|
|
Journal : Eur J Med Chem
Title : Discovery of meta-sulfamoyl N-hydroxybenzamides as HDAC8 selective inhibitors.
Year : 2018
Volume : 150
First Page : 282
Last Page : 291
Authors : Zhao C, Zang J, Ding Q, Inks ES, Xu W, Chou CJ, Zhang Y.
Abstract : In the past decade, although research and development of histone deacetylase (HDAC) inhibitors as therapeutic agents have achieved great accomplishments, especially in oncology field, there is still an urgent need for the discovery of isoform-selective HDAC inhibitors considering the side effects caused by nonselective HDAC inhibitors. HDAC8, a unique class I zinc-dependent HDAC, is becoming a potential target in cancer and other diseases. In the current study, a novel series of N-hydroxy-3-sulfamoylbenzamide-based HDAC8 selective inhibitors (12a-12p) were designed and synthesized, among which compounds 12a, 12b and 12c exhibited potent HDAC8 inhibition with two-digit nanomolar IC50 values, and considerable selectivity over HDAC2 (>180-fold) and HDAC6 (∼30-fold) which was confirmed by western blot analysis. It is worth noting that 12a, 12b and 12c displayed highly selective anti-proliferative activity to T-cell leukemia cell lines Jurkat, Molt-4 and neuroblastoma cell line SK-N-BE-(2). Such selective cytotoxicity was also observed in the well-known HDAC8 selective inhibitor PCI-34051 but not in the pan-HDAC inhibitors SAHA and PXD101, indicating that HDAC8 selective inhibitor should have preferable benefit-risk profile in comparison with pan-HDAC inhibitor. Finally, the HDAC8 selectivity of 12a, 12b and 12c was rationalized by molecular docking study.
Antiproliferative activity against human SK-N-BE(2) cells after 48 hrs by MTT assay
|
Homo sapiens
|
310.0
nM
|
|
Journal : Eur J Med Chem
Title : Discovery of meta-sulfamoyl N-hydroxybenzamides as HDAC8 selective inhibitors.
Year : 2018
Volume : 150
First Page : 282
Last Page : 291
Authors : Zhao C, Zang J, Ding Q, Inks ES, Xu W, Chou CJ, Zhang Y.
Abstract : In the past decade, although research and development of histone deacetylase (HDAC) inhibitors as therapeutic agents have achieved great accomplishments, especially in oncology field, there is still an urgent need for the discovery of isoform-selective HDAC inhibitors considering the side effects caused by nonselective HDAC inhibitors. HDAC8, a unique class I zinc-dependent HDAC, is becoming a potential target in cancer and other diseases. In the current study, a novel series of N-hydroxy-3-sulfamoylbenzamide-based HDAC8 selective inhibitors (12a-12p) were designed and synthesized, among which compounds 12a, 12b and 12c exhibited potent HDAC8 inhibition with two-digit nanomolar IC50 values, and considerable selectivity over HDAC2 (>180-fold) and HDAC6 (∼30-fold) which was confirmed by western blot analysis. It is worth noting that 12a, 12b and 12c displayed highly selective anti-proliferative activity to T-cell leukemia cell lines Jurkat, Molt-4 and neuroblastoma cell line SK-N-BE-(2). Such selective cytotoxicity was also observed in the well-known HDAC8 selective inhibitor PCI-34051 but not in the pan-HDAC inhibitors SAHA and PXD101, indicating that HDAC8 selective inhibitor should have preferable benefit-risk profile in comparison with pan-HDAC inhibitor. Finally, the HDAC8 selectivity of 12a, 12b and 12c was rationalized by molecular docking study.
Antiproliferative activity against human HeLa cells after 48 hrs by MTT assay
|
Homo sapiens
|
510.0
nM
|
|
Journal : Eur J Med Chem
Title : Discovery of meta-sulfamoyl N-hydroxybenzamides as HDAC8 selective inhibitors.
Year : 2018
Volume : 150
First Page : 282
Last Page : 291
Authors : Zhao C, Zang J, Ding Q, Inks ES, Xu W, Chou CJ, Zhang Y.
Abstract : In the past decade, although research and development of histone deacetylase (HDAC) inhibitors as therapeutic agents have achieved great accomplishments, especially in oncology field, there is still an urgent need for the discovery of isoform-selective HDAC inhibitors considering the side effects caused by nonselective HDAC inhibitors. HDAC8, a unique class I zinc-dependent HDAC, is becoming a potential target in cancer and other diseases. In the current study, a novel series of N-hydroxy-3-sulfamoylbenzamide-based HDAC8 selective inhibitors (12a-12p) were designed and synthesized, among which compounds 12a, 12b and 12c exhibited potent HDAC8 inhibition with two-digit nanomolar IC50 values, and considerable selectivity over HDAC2 (>180-fold) and HDAC6 (∼30-fold) which was confirmed by western blot analysis. It is worth noting that 12a, 12b and 12c displayed highly selective anti-proliferative activity to T-cell leukemia cell lines Jurkat, Molt-4 and neuroblastoma cell line SK-N-BE-(2). Such selective cytotoxicity was also observed in the well-known HDAC8 selective inhibitor PCI-34051 but not in the pan-HDAC inhibitors SAHA and PXD101, indicating that HDAC8 selective inhibitor should have preferable benefit-risk profile in comparison with pan-HDAC inhibitor. Finally, the HDAC8 selectivity of 12a, 12b and 12c was rationalized by molecular docking study.
Antiproliferative activity against human HEL cells after 48 hrs by MTT assay
|
Homo sapiens
|
100.0
nM
|
|
Journal : Eur J Med Chem
Title : Discovery of meta-sulfamoyl N-hydroxybenzamides as HDAC8 selective inhibitors.
Year : 2018
Volume : 150
First Page : 282
Last Page : 291
Authors : Zhao C, Zang J, Ding Q, Inks ES, Xu W, Chou CJ, Zhang Y.
Abstract : In the past decade, although research and development of histone deacetylase (HDAC) inhibitors as therapeutic agents have achieved great accomplishments, especially in oncology field, there is still an urgent need for the discovery of isoform-selective HDAC inhibitors considering the side effects caused by nonselective HDAC inhibitors. HDAC8, a unique class I zinc-dependent HDAC, is becoming a potential target in cancer and other diseases. In the current study, a novel series of N-hydroxy-3-sulfamoylbenzamide-based HDAC8 selective inhibitors (12a-12p) were designed and synthesized, among which compounds 12a, 12b and 12c exhibited potent HDAC8 inhibition with two-digit nanomolar IC50 values, and considerable selectivity over HDAC2 (>180-fold) and HDAC6 (∼30-fold) which was confirmed by western blot analysis. It is worth noting that 12a, 12b and 12c displayed highly selective anti-proliferative activity to T-cell leukemia cell lines Jurkat, Molt-4 and neuroblastoma cell line SK-N-BE-(2). Such selective cytotoxicity was also observed in the well-known HDAC8 selective inhibitor PCI-34051 but not in the pan-HDAC inhibitors SAHA and PXD101, indicating that HDAC8 selective inhibitor should have preferable benefit-risk profile in comparison with pan-HDAC inhibitor. Finally, the HDAC8 selectivity of 12a, 12b and 12c was rationalized by molecular docking study.
Inhibition of HDAC1 (unknown origin)
|
Homo sapiens
|
34.0
nM
|
|
Journal : Eur J Med Chem
Title : Discovery of meta-sulfamoyl N-hydroxybenzamides as HDAC8 selective inhibitors.
Year : 2018
Volume : 150
First Page : 282
Last Page : 291
Authors : Zhao C, Zang J, Ding Q, Inks ES, Xu W, Chou CJ, Zhang Y.
Abstract : In the past decade, although research and development of histone deacetylase (HDAC) inhibitors as therapeutic agents have achieved great accomplishments, especially in oncology field, there is still an urgent need for the discovery of isoform-selective HDAC inhibitors considering the side effects caused by nonselective HDAC inhibitors. HDAC8, a unique class I zinc-dependent HDAC, is becoming a potential target in cancer and other diseases. In the current study, a novel series of N-hydroxy-3-sulfamoylbenzamide-based HDAC8 selective inhibitors (12a-12p) were designed and synthesized, among which compounds 12a, 12b and 12c exhibited potent HDAC8 inhibition with two-digit nanomolar IC50 values, and considerable selectivity over HDAC2 (>180-fold) and HDAC6 (∼30-fold) which was confirmed by western blot analysis. It is worth noting that 12a, 12b and 12c displayed highly selective anti-proliferative activity to T-cell leukemia cell lines Jurkat, Molt-4 and neuroblastoma cell line SK-N-BE-(2). Such selective cytotoxicity was also observed in the well-known HDAC8 selective inhibitor PCI-34051 but not in the pan-HDAC inhibitors SAHA and PXD101, indicating that HDAC8 selective inhibitor should have preferable benefit-risk profile in comparison with pan-HDAC inhibitor. Finally, the HDAC8 selectivity of 12a, 12b and 12c was rationalized by molecular docking study.
Inhibition of HDAC6 (unknown origin)
|
Homo sapiens
|
27.0
nM
|
|
Journal : Eur J Med Chem
Title : Discovery of meta-sulfamoyl N-hydroxybenzamides as HDAC8 selective inhibitors.
Year : 2018
Volume : 150
First Page : 282
Last Page : 291
Authors : Zhao C, Zang J, Ding Q, Inks ES, Xu W, Chou CJ, Zhang Y.
Abstract : In the past decade, although research and development of histone deacetylase (HDAC) inhibitors as therapeutic agents have achieved great accomplishments, especially in oncology field, there is still an urgent need for the discovery of isoform-selective HDAC inhibitors considering the side effects caused by nonselective HDAC inhibitors. HDAC8, a unique class I zinc-dependent HDAC, is becoming a potential target in cancer and other diseases. In the current study, a novel series of N-hydroxy-3-sulfamoylbenzamide-based HDAC8 selective inhibitors (12a-12p) were designed and synthesized, among which compounds 12a, 12b and 12c exhibited potent HDAC8 inhibition with two-digit nanomolar IC50 values, and considerable selectivity over HDAC2 (>180-fold) and HDAC6 (∼30-fold) which was confirmed by western blot analysis. It is worth noting that 12a, 12b and 12c displayed highly selective anti-proliferative activity to T-cell leukemia cell lines Jurkat, Molt-4 and neuroblastoma cell line SK-N-BE-(2). Such selective cytotoxicity was also observed in the well-known HDAC8 selective inhibitor PCI-34051 but not in the pan-HDAC inhibitors SAHA and PXD101, indicating that HDAC8 selective inhibitor should have preferable benefit-risk profile in comparison with pan-HDAC inhibitor. Finally, the HDAC8 selectivity of 12a, 12b and 12c was rationalized by molecular docking study.
Inhibition of HDAC8 (unknown origin)
|
Homo sapiens
|
353.0
nM
|
|
Journal : Eur J Med Chem
Title : Discovery of meta-sulfamoyl N-hydroxybenzamides as HDAC8 selective inhibitors.
Year : 2018
Volume : 150
First Page : 282
Last Page : 291
Authors : Zhao C, Zang J, Ding Q, Inks ES, Xu W, Chou CJ, Zhang Y.
Abstract : In the past decade, although research and development of histone deacetylase (HDAC) inhibitors as therapeutic agents have achieved great accomplishments, especially in oncology field, there is still an urgent need for the discovery of isoform-selective HDAC inhibitors considering the side effects caused by nonselective HDAC inhibitors. HDAC8, a unique class I zinc-dependent HDAC, is becoming a potential target in cancer and other diseases. In the current study, a novel series of N-hydroxy-3-sulfamoylbenzamide-based HDAC8 selective inhibitors (12a-12p) were designed and synthesized, among which compounds 12a, 12b and 12c exhibited potent HDAC8 inhibition with two-digit nanomolar IC50 values, and considerable selectivity over HDAC2 (>180-fold) and HDAC6 (∼30-fold) which was confirmed by western blot analysis. It is worth noting that 12a, 12b and 12c displayed highly selective anti-proliferative activity to T-cell leukemia cell lines Jurkat, Molt-4 and neuroblastoma cell line SK-N-BE-(2). Such selective cytotoxicity was also observed in the well-known HDAC8 selective inhibitor PCI-34051 but not in the pan-HDAC inhibitors SAHA and PXD101, indicating that HDAC8 selective inhibitor should have preferable benefit-risk profile in comparison with pan-HDAC inhibitor. Finally, the HDAC8 selectivity of 12a, 12b and 12c was rationalized by molecular docking study.
Antiproliferative activity against human MDA-MB-231 cells after 72 hrs by resazurin dye based fluorescence assay
|
Homo sapiens
|
62.0
nM
|
|
Journal : ACS Med Chem Lett
Title : Biocompatible Boron-Containing Prodrugs of Belinostat for the Potential Treatment of Solid Tumors.
Year : 2018
Volume : 9
Issue : 2
First Page : 149
Last Page : 154
Authors : Zheng S, Guo S, Zhong Q, Zhang C, Liu J, Yang L, Zhang Q, Wang G.
Abstract : Despite promising therapeutic utilities for treatment of hematological malignancies, histone deacetylase inhibitor (HDACi) drugs have not proven as effective in the treatment of solid tumors. To expand the clinical indications of HDACi drugs, we developed novel boron-containing prodrugs of belinostat (2), one of which efficiently releases active 2 through a cascade of reactions in cell culture and demonstrates activities comparable to 2 against a panel of cancer cell lines. Importantly, prodrug 7 is more efficacious than belinostat in vivo, not only inhibiting the growth of tumor but also reducing tumor volumes in an MCF-7 xenograft tumor model owing to its superior biocompatibility, which suggests its clinical potential in the treatment of solid tumors.
Antiproliferative activity against human A549 cells after 72 hrs by resazurin dye based fluorescence assay
|
Homo sapiens
|
77.0
nM
|
|
Journal : ACS Med Chem Lett
Title : Biocompatible Boron-Containing Prodrugs of Belinostat for the Potential Treatment of Solid Tumors.
Year : 2018
Volume : 9
Issue : 2
First Page : 149
Last Page : 154
Authors : Zheng S, Guo S, Zhong Q, Zhang C, Liu J, Yang L, Zhang Q, Wang G.
Abstract : Despite promising therapeutic utilities for treatment of hematological malignancies, histone deacetylase inhibitor (HDACi) drugs have not proven as effective in the treatment of solid tumors. To expand the clinical indications of HDACi drugs, we developed novel boron-containing prodrugs of belinostat (2), one of which efficiently releases active 2 through a cascade of reactions in cell culture and demonstrates activities comparable to 2 against a panel of cancer cell lines. Importantly, prodrug 7 is more efficacious than belinostat in vivo, not only inhibiting the growth of tumor but also reducing tumor volumes in an MCF-7 xenograft tumor model owing to its superior biocompatibility, which suggests its clinical potential in the treatment of solid tumors.
Antiproliferative activity against human HeLa cells after 72 hrs by resazurin dye based fluorescence assay
|
Homo sapiens
|
87.0
nM
|
|
Journal : ACS Med Chem Lett
Title : Biocompatible Boron-Containing Prodrugs of Belinostat for the Potential Treatment of Solid Tumors.
Year : 2018
Volume : 9
Issue : 2
First Page : 149
Last Page : 154
Authors : Zheng S, Guo S, Zhong Q, Zhang C, Liu J, Yang L, Zhang Q, Wang G.
Abstract : Despite promising therapeutic utilities for treatment of hematological malignancies, histone deacetylase inhibitor (HDACi) drugs have not proven as effective in the treatment of solid tumors. To expand the clinical indications of HDACi drugs, we developed novel boron-containing prodrugs of belinostat (2), one of which efficiently releases active 2 through a cascade of reactions in cell culture and demonstrates activities comparable to 2 against a panel of cancer cell lines. Importantly, prodrug 7 is more efficacious than belinostat in vivo, not only inhibiting the growth of tumor but also reducing tumor volumes in an MCF-7 xenograft tumor model owing to its superior biocompatibility, which suggests its clinical potential in the treatment of solid tumors.
Antiproliferative activity against human MCF7 cells after 72 hrs by resazurin dye based fluorescence assay
|
Homo sapiens
|
96.0
nM
|
|
Journal : ACS Med Chem Lett
Title : Biocompatible Boron-Containing Prodrugs of Belinostat for the Potential Treatment of Solid Tumors.
Year : 2018
Volume : 9
Issue : 2
First Page : 149
Last Page : 154
Authors : Zheng S, Guo S, Zhong Q, Zhang C, Liu J, Yang L, Zhang Q, Wang G.
Abstract : Despite promising therapeutic utilities for treatment of hematological malignancies, histone deacetylase inhibitor (HDACi) drugs have not proven as effective in the treatment of solid tumors. To expand the clinical indications of HDACi drugs, we developed novel boron-containing prodrugs of belinostat (2), one of which efficiently releases active 2 through a cascade of reactions in cell culture and demonstrates activities comparable to 2 against a panel of cancer cell lines. Importantly, prodrug 7 is more efficacious than belinostat in vivo, not only inhibiting the growth of tumor but also reducing tumor volumes in an MCF-7 xenograft tumor model owing to its superior biocompatibility, which suggests its clinical potential in the treatment of solid tumors.
Inhibition of HDAC in human cell lysates using fluoro-substrate peptide/fluoro-deacetylated peptide as substrate incubated for 20 mins measured at 1 to 2 mins interval for 30 to 60 mins by fluorescence assay
|
Homo sapiens
|
30.0
nM
|
|
Journal : ACS Med Chem Lett
Title : Biocompatible Boron-Containing Prodrugs of Belinostat for the Potential Treatment of Solid Tumors.
Year : 2018
Volume : 9
Issue : 2
First Page : 149
Last Page : 154
Authors : Zheng S, Guo S, Zhong Q, Zhang C, Liu J, Yang L, Zhang Q, Wang G.
Abstract : Despite promising therapeutic utilities for treatment of hematological malignancies, histone deacetylase inhibitor (HDACi) drugs have not proven as effective in the treatment of solid tumors. To expand the clinical indications of HDACi drugs, we developed novel boron-containing prodrugs of belinostat (2), one of which efficiently releases active 2 through a cascade of reactions in cell culture and demonstrates activities comparable to 2 against a panel of cancer cell lines. Importantly, prodrug 7 is more efficacious than belinostat in vivo, not only inhibiting the growth of tumor but also reducing tumor volumes in an MCF-7 xenograft tumor model owing to its superior biocompatibility, which suggests its clinical potential in the treatment of solid tumors.
Antimalarial activity against Plasmodium falciparum 3D7 infected in human erythrocytes assessed as reduction in [3H]-hypoxanthine incorporation preincubated for 48 hrs followed by [3H]-hypoxanthine addition measured after 24 hrs by scintillation counting method
|
Plasmodium falciparum 3D7
|
60.0
nM
|
|
Journal : Eur J Med Chem
Title : One-pot, multi-component synthesis and structure-activity relationships of peptoid-based histone deacetylase (HDAC) inhibitors targeting malaria parasites.
Year : 2018
Volume : 158
First Page : 801
Last Page : 813
Authors : Diedrich D, Stenzel K, Hesping E, Antonova-Koch Y, Gebru T, Duffy S, Fisher G, Schöler A, Meister S, Kurz T, Avery VM, Winzeler EA, Held J, Andrews KT, Hansen FK.
Abstract : Malaria drug discovery has shifted from a focus on targeting asexual blood stage parasites, to the development of drugs that can also target exo-erythrocytic forms and/or gametocytes in order to prevent malaria and/or parasite transmission. In this work, we aimed to develop parasite-selective histone deacetylase inhibitors (HDACi) with activity against the disease-causing asexual blood stages of Plasmodium malaria parasites as well as with causal prophylactic and/or transmission blocking properties. An optimized one-pot, multi-component protocol via a sequential Ugi four-component reaction and hydroxylaminolysis was used for the preparation of a panel of peptoid-based HDACi. Several compounds displayed potent activity against drug-sensitive and drug-resistant P. falciparum asexual blood stages, high parasite-selectivity and submicromolar activity against exo-erythrocytic forms of P. berghei. Our optimization study resulted in the discovery of the hit compound 1u which combines high activity against asexual blood stage parasites (Pf 3D7 IC50: 4 nM; Pf Dd2 IC50: 1 nM) and P. berghei exo-erythrocytic forms (Pb EEF IC50: 25 nM) with promising parasite-specific activity (SIPf3D7/HepG2: 2496, SIPfDd2/HepG2: 9990, and SIPbEEF/HepG2: 400).
Antimalarial activity against Plasmodium falciparum Dd2 infected in human erythrocytes assessed as reduction in [3H]-hypoxanthine incorporation preincubated for 48 hrs followed by [3H]-hypoxanthine addition measured after 24 hrs by scintillation counting method
|
Plasmodium falciparum Dd2
|
60.0
nM
|
|
Journal : Eur J Med Chem
Title : One-pot, multi-component synthesis and structure-activity relationships of peptoid-based histone deacetylase (HDAC) inhibitors targeting malaria parasites.
Year : 2018
Volume : 158
First Page : 801
Last Page : 813
Authors : Diedrich D, Stenzel K, Hesping E, Antonova-Koch Y, Gebru T, Duffy S, Fisher G, Schöler A, Meister S, Kurz T, Avery VM, Winzeler EA, Held J, Andrews KT, Hansen FK.
Abstract : Malaria drug discovery has shifted from a focus on targeting asexual blood stage parasites, to the development of drugs that can also target exo-erythrocytic forms and/or gametocytes in order to prevent malaria and/or parasite transmission. In this work, we aimed to develop parasite-selective histone deacetylase inhibitors (HDACi) with activity against the disease-causing asexual blood stages of Plasmodium malaria parasites as well as with causal prophylactic and/or transmission blocking properties. An optimized one-pot, multi-component protocol via a sequential Ugi four-component reaction and hydroxylaminolysis was used for the preparation of a panel of peptoid-based HDACi. Several compounds displayed potent activity against drug-sensitive and drug-resistant P. falciparum asexual blood stages, high parasite-selectivity and submicromolar activity against exo-erythrocytic forms of P. berghei. Our optimization study resulted in the discovery of the hit compound 1u which combines high activity against asexual blood stage parasites (Pf 3D7 IC50: 4 nM; Pf Dd2 IC50: 1 nM) and P. berghei exo-erythrocytic forms (Pb EEF IC50: 25 nM) with promising parasite-specific activity (SIPf3D7/HepG2: 2496, SIPfDd2/HepG2: 9990, and SIPbEEF/HepG2: 400).
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of Caco-2 cells at 10 uM after 48 hours by high content imaging
|
Homo sapiens
|
16.22
%
|
|
Title : Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection
Year : 2020
Authors : Bernhard Ellinger, Denisa Bojkova, Andrea Zaliani, Jindrich Cinatl, Carsten Claussen, Sandra Westhaus, Jeanette Reinshagen, Maria Kuzikov, Markus Wolf, Gerd Geisslinger, Philip Gribbon, Sandra Ciesek
Abstract : To identify possible candidates for progression towards clinical studies against SARS-CoV-2, we screened a well-defined collection of 5632 compounds including 3488 compounds which have undergone clinical investigations (marketed drugs, phases 1 -3, and withdrawn) across 600 indications. Compounds were screened for their inhibition of viral induced cytotoxicity using the human epithelial colorectal adenocarcinoma cell line Caco-2 and a SARS-CoV-2 isolate. The primary screen of 5632 compounds gave 271 hits. A total of 64 compounds with IC50 <20 µM were identified, including 19 compounds with IC50 < 1 µM. Of this confirmed hit population, 90% have not yet been previously reported as active against SARS-CoV-2 in-vitro cell assays. Some 37 of the actives are launched drugs, 19 are in phases 1-3 and 10 pre-clinical. Several inhibitors were associated with modulation of host pathways including kinase signaling P53 activation, ubiquitin pathways and PDE activity modulation, with long chain acyl transferases were effective viral inhibitors.
Inhibition of HADC6 (unknown origin)
|
Homo sapiens
|
82.0
nM
|
|
Journal : J Med Chem
Title : Old but Gold: Tracking the New Guise of Histone Deacetylase 6 (HDAC6) Enzyme as a Biomarker and Therapeutic Target in Rare Diseases.
Year : 2020
Volume : 63
Issue : 1
First Page : 23
Last Page : 39
Authors : Brindisi M, Saraswati AP, Brogi S, Gemma S, Butini S, Campiani G.
Abstract : Epigenetic regulation orchestrates many cellular processes and greatly influences key disease mechanisms. Histone deacetylase (HDAC) enzymes play a crucial role either as biomarkers or therapeutic targets owing to their involvement in specific pathophysiological pathways. Beyond their well-characterized role as histone modifiers, HDACs also interact with several nonhistone substrates and their increased expression has been highlighted in specific diseases. The HDAC6 isoform, due to its unique cytoplasmic localization, modulates the acetylation status of tubulin, HSP90, TGF-β, and peroxiredoxins. HDAC6 also exerts noncatalytic activities through its interaction with ubiquitin. Both catalytic and noncatalytic functions of HDACs are being actively studied in the field of specific rare disorders beyond the well-established role in carcinogenesis. This Perspective outlines the application of HDAC(6) inhibitors in rare diseases, such as Rett syndrome, inherited retinal disorders, idiopathic pulmonary fibrosis, and Charcot-Marie-Tooth disease, highlighting their therapeutic potential as innovative and targeted disease-modifying agents.
Inhibition of HDAC in human HeLa cell extracts
|
Homo sapiens
|
10.0
nM
|
|
Journal : Eur J Med Chem
Title : Indole: A privileged scaffold for the design of anti-cancer agents.
Year : 2019
Volume : 183
First Page : 111691
Last Page : 111691
Authors : Wan Y, Li Y, Yan C, Yan M, Tang Z.
Abstract : In general, heterocyclic compounds are a significant source of pharmacologically active compounds. Among them, the indole scaffold widely distributes in natural products and bioactive molecules including anti-cancer agents. In view of its unique physic-chemical and biological properties, it has been used as a privileged scaffold in the anti-cancer agents design. So far, many natural and synthetic indole derivatives have been discovered as promising anti-cancer agents used in clinic or clinical evaluations, suggesting its prominent place in anti-cancer drugs development. This review aimed to provide a clear knowledge on the recent development of indoles as anti-cancer agents, such as myeloid cell leukemia-1 (Mcl-1) inhibitors, proviral insertion site in moloney murine leukemia virus (Pim) inhibitors, histone deacetylase (HDAC) inhibitors, silent mating type information regulation 2 homolog (SIRT) inhibitors and tubulin inhibitors, and made an insight into the corresponding structure-activity relationships (SARs). We hope the review could give a guide to develop new anti-cancer agents with greater potency against drug-sensitive and drug-resistant cancers in the future.
Inhibition Class 1 histone deacetylase in human HeLa nuclear extracts using Fluor-de- Lys-green substrate by fluorescence assay
|
Homo sapiens
|
189.0
nM
|
|
Journal : Bioorg Med Chem Lett
Title : Exploring hydroxamic acid inhibitors of HDAC1 and HDAC2 using small molecule tools and molecular or homology modelling.
Year : 2019
Volume : 29
Issue : 18
First Page : 2581
Last Page : 2586
Authors : Daniel L, Gotsbacher MP, Richardson-Sanchez T, Tieu W, Codd R.
Abstract : Hydroxamic acid compounds 1-10 containing a N-hydroxycinnamamide scaffold and a 4-(benzylamino)methyl cap group that was either unsubstituted (1) or substituted with one (2-4) or two (5-10) methoxy groups in variable positions were prepared as inhibitors of Zn(II)-containing histone deacetylases (HDACs). The 3,4- (9) and 3,5- (10) bis-methoxy-substituted compounds were the least potent against HeLa nuclear extract, HDAC1 and HDAC2. Molecular modelling showed methoxy groups in the 3-, 4- and 5-position, but not the 2-position, had unfavourable steric interactions with the G32-H33-P34 triad on a loop at the surface of the HDAC2 active site cavity. An HDAC1 homology model showed potential ionic (E243..K288) and cation-pi (K247..F292) interactions between helix 10 and helix 11 that were absent in HDAC2 ((G243..K288) and (K247..V292)). This surface-located interhelical constraint could inform the design of bitopic HDAC1 and HDAC2 selective ligands using an allosteric approach, and/or protein-protein interaction (PPI) inhibitors.
Antiviral activity against HCV infected in human HuH7-luc/neo cells assessed as inhibition of DNA replication incubated for 3 days by luciferase reporter gene assay
|
Hepatitis C virus
|
190.0
nM
|
|
Journal : Bioorg Med Chem Lett
Title : Synthesis of N'-propylhydrazide analogs of hydroxamic inhibitors of histone deacetylases (HDACs) and evaluation of their impact on activities of HDACs and replication of hepatitis C virus (HCV).
Year : 2019
Volume : 29
Issue : 16
First Page : 2369
Last Page : 2374
Authors : Kozlov MV, Konduktorov KA, Shcherbakova AS, Kochetkov SN.
Abstract : N'-Propylhydrazide analogs of hydroxamic inhibitors of histone deacetylases (HDACs), including tubastatin A, vorinostat and belinostat, were synthesized. All prepared compounds inhibited HDAC1/2/3, but not HDAC6, except for one hydrazide analog of HDAC4/5/7 inhibitor that was completely inactive. A novel 4-substituted derivative of N'-propylbenzohydrazide with extremely high anti-HCV activity was discovered.
Inhibition of HDAC in human HeLa nuclear extract using Boc-Lys(Ac)-AMC as substrate preincubated for 5 mins followed by substrate addition and measured after 30 mins by fluorescence assay
|
Homo sapiens
|
87.0
nM
|
|
Journal : Bioorg Med Chem
Title : Design, synthesis and activity evaluation of indole-based double - Branched HDAC1 inhibitors.
Year : 2019
Volume : 27
Issue : 8
First Page : 1595
Last Page : 1604
Authors : Zhang Q, Lv J, He F, Yu C, Qu Y, Zhang X, Xu A, Wu J.
Abstract : Histone deacetylases inhibitors (HDACIs) represents effective treatments for cancer. In continuing our efforts to develop novel and potent HDACIs, a series of N-hydroxycinnamamide-based HDACIs with aromatic ring and various aliphatic linker have been successfully designed and synthesized. Biological evaluations established that compounds 4h, 4i, 4j, 4l, 4r showed superior inhibition on histone deacetylase and antiproliferative activity in some solid tumor cell lines [HeLa, SK-N-BE(2), PC-3] compared to the known inhibitor SAHA. Among these analogs, 4l exhibited selectivity to HDAC1.
Antiproliferative activity against human HT-29 cells after 48 hrs by MTT assay
|
Homo sapiens
|
860.0
nM
|
|
Journal : Bioorg Med Chem
Title : Design, synthesis and activity evaluation of indole-based double - Branched HDAC1 inhibitors.
Year : 2019
Volume : 27
Issue : 8
First Page : 1595
Last Page : 1604
Authors : Zhang Q, Lv J, He F, Yu C, Qu Y, Zhang X, Xu A, Wu J.
Abstract : Histone deacetylases inhibitors (HDACIs) represents effective treatments for cancer. In continuing our efforts to develop novel and potent HDACIs, a series of N-hydroxycinnamamide-based HDACIs with aromatic ring and various aliphatic linker have been successfully designed and synthesized. Biological evaluations established that compounds 4h, 4i, 4j, 4l, 4r showed superior inhibition on histone deacetylase and antiproliferative activity in some solid tumor cell lines [HeLa, SK-N-BE(2), PC-3] compared to the known inhibitor SAHA. Among these analogs, 4l exhibited selectivity to HDAC1.
Antiproliferative activity against human HEL cells after 48 hrs by MTT assay
|
Homo sapiens
|
781.25
nM
|
|
Journal : Bioorg Med Chem
Title : Design, synthesis and activity evaluation of indole-based double - Branched HDAC1 inhibitors.
Year : 2019
Volume : 27
Issue : 8
First Page : 1595
Last Page : 1604
Authors : Zhang Q, Lv J, He F, Yu C, Qu Y, Zhang X, Xu A, Wu J.
Abstract : Histone deacetylases inhibitors (HDACIs) represents effective treatments for cancer. In continuing our efforts to develop novel and potent HDACIs, a series of N-hydroxycinnamamide-based HDACIs with aromatic ring and various aliphatic linker have been successfully designed and synthesized. Biological evaluations established that compounds 4h, 4i, 4j, 4l, 4r showed superior inhibition on histone deacetylase and antiproliferative activity in some solid tumor cell lines [HeLa, SK-N-BE(2), PC-3] compared to the known inhibitor SAHA. Among these analogs, 4l exhibited selectivity to HDAC1.
Antiproliferative activity against human U937 cells after 48 hrs by MTT assay
|
Homo sapiens
|
400.0
nM
|
|
Journal : Bioorg Med Chem
Title : Design, synthesis and activity evaluation of indole-based double - Branched HDAC1 inhibitors.
Year : 2019
Volume : 27
Issue : 8
First Page : 1595
Last Page : 1604
Authors : Zhang Q, Lv J, He F, Yu C, Qu Y, Zhang X, Xu A, Wu J.
Abstract : Histone deacetylases inhibitors (HDACIs) represents effective treatments for cancer. In continuing our efforts to develop novel and potent HDACIs, a series of N-hydroxycinnamamide-based HDACIs with aromatic ring and various aliphatic linker have been successfully designed and synthesized. Biological evaluations established that compounds 4h, 4i, 4j, 4l, 4r showed superior inhibition on histone deacetylase and antiproliferative activity in some solid tumor cell lines [HeLa, SK-N-BE(2), PC-3] compared to the known inhibitor SAHA. Among these analogs, 4l exhibited selectivity to HDAC1.
Inhibition of HDAC1 (unknown origin) using Ac-Leu-GlyLys(Ac)-AMC as substrate preincubated for 5 mins followed by substrate addition and measured after 30 mins by fluorescence assay
|
Homo sapiens
|
1.376
nM
|
|
Journal : Bioorg Med Chem
Title : Design, synthesis and activity evaluation of indole-based double - Branched HDAC1 inhibitors.
Year : 2019
Volume : 27
Issue : 8
First Page : 1595
Last Page : 1604
Authors : Zhang Q, Lv J, He F, Yu C, Qu Y, Zhang X, Xu A, Wu J.
Abstract : Histone deacetylases inhibitors (HDACIs) represents effective treatments for cancer. In continuing our efforts to develop novel and potent HDACIs, a series of N-hydroxycinnamamide-based HDACIs with aromatic ring and various aliphatic linker have been successfully designed and synthesized. Biological evaluations established that compounds 4h, 4i, 4j, 4l, 4r showed superior inhibition on histone deacetylase and antiproliferative activity in some solid tumor cell lines [HeLa, SK-N-BE(2), PC-3] compared to the known inhibitor SAHA. Among these analogs, 4l exhibited selectivity to HDAC1.
Inhibition of HDAC8 (unknown origin) using Ac-Leu-GlyLys(Ac)-AMC as substrate preincubated for 5 mins followed by substrate addition and measured after 30 mins by fluorescence assay
|
Homo sapiens
|
67.85
nM
|
|
Journal : Bioorg Med Chem
Title : Design, synthesis and activity evaluation of indole-based double - Branched HDAC1 inhibitors.
Year : 2019
Volume : 27
Issue : 8
First Page : 1595
Last Page : 1604
Authors : Zhang Q, Lv J, He F, Yu C, Qu Y, Zhang X, Xu A, Wu J.
Abstract : Histone deacetylases inhibitors (HDACIs) represents effective treatments for cancer. In continuing our efforts to develop novel and potent HDACIs, a series of N-hydroxycinnamamide-based HDACIs with aromatic ring and various aliphatic linker have been successfully designed and synthesized. Biological evaluations established that compounds 4h, 4i, 4j, 4l, 4r showed superior inhibition on histone deacetylase and antiproliferative activity in some solid tumor cell lines [HeLa, SK-N-BE(2), PC-3] compared to the known inhibitor SAHA. Among these analogs, 4l exhibited selectivity to HDAC1.
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
2.48
%
|
|
SARS-CoV-2 3CL-Pro protease inhibition percentage at 20µM by FRET kind of response from peptide substrate
|
Severe acute respiratory syndrome coronavirus 2
|
8.17
%
|
|
Title : Identification of inhibitors of SARS-Cov2 M-Pro enzymatic activity using a small molecule repurposing screen
Year : 2020
Authors : Maria Kuzikov, Elisa Costanzi, Jeanette Reinshagen, Francesca Esposito, Laura Vangeel, Markus Wolf, Bernhard Ellinger, Carsten Claussen, Gerd Geisslinger, Angela Corona, Daniela Iaconis, Carmine Talarico, Candida Manelfi, Rolando Cannalire, Giulia Rossetti, Jonas Gossen, Simone Albani, Francesco Musiani, Katja Herzog, Yang Ye, Barbara Giabbai, Nicola Demitri, Dirk Jochmans, Steven De Jonghe, Jasper Rymenants, Vincenzo Summa, Enzo Tramontano, Andrea R. Beccari, Pieter Leyssen, Paola Storici, Johan Neyts, Philip Gribbon, and Andrea Zaliani
Abstract : Compound repurposing is an important strategy being pursued in the identification of effective treatment against the SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (M-Pro), also termed 3CL-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyprotein into 11 non-structural proteins. We report the results of a screening campaign involving ca 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and chemicals regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro, but we have also identified 68 compounds with IC50 lower than 1 uM and 127 compounds with IC50 lower than 5 uM. Profiling showed 67% of confirmed hits were selective (> 5 fold) against other Cys- and Ser- proteases (Chymotrypsin and Cathepsin-L) and MERS 3CL-Pro. Selected compounds were also analysed in their binding characteristics.
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
4.76
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
5.12
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
5.12
%
|
|
Antiviral activity determined as inhibition of SARS-CoV-2 induced cytotoxicity of VERO-6 cells at 10 uM after 48 hours exposure to 0.01 MOI SARS CoV-2 virus by high content imaging
|
Chlorocebus sabaeus
|
4.76
%
|
|
Title : Cytopathic SARS-Cov2 screening on VERO-E6 cells in a large repurposing effort
Year : 2020
Authors : Andrea Zaliani, Laura Vangeel, Jeanette Reinshagen, Daniela Iaconis, Maria Kuzikov, Oliver Keminer, Markus Wolf, Bernhard Ellinger, Francesca Esposito, Angela Corona, Enzo Tramontano, Candida Manelfi, Katja Herzog, Dirk Jochmans, Steven De Jonghe, Winston Chiu, Thibault Francken, Joost Schepers, Caroline Collard, Kayvan Abbasi, Carsten Claussen , Vincenzo Summa, Andrea R. Beccari, Johan Neyts, Philip Gribbon and Pieter Leyssen
Abstract : Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.
Inhibition of N-His6-tagged human AspH (315-755) expressed in Escherichia coli BL21 (DE3) at 20uM using 1 uM hFX-CP as substrate mixture with 3 uM 2OG, 100 uM L-ascorbic acid and 2 uM FAS incubated for 35 mins by MS analysis
|
Homo sapiens
|
97.1
%
|
|
Journal : Bioorg Med Chem
Title : Small-molecule active pharmaceutical ingredients of approved cancer therapeutics inhibit human aspartate/asparagine-β-hydroxylase.
Year : 2020
Volume : 28
Issue : 20.0
First Page : 115675
Last Page : 115675
Authors : Brewitz L,Tumber A,Zhang X,Schofield CJ
Abstract : Human aspartate/asparagine-β-hydroxylase (AspH) is a 2-oxoglutarate (2OG) dependent oxygenase that catalyses the hydroxylation of Asp/Asn-residues of epidermal growth factor-like domains (EGFDs). AspH is reported to be upregulated on the cell surface of invasive cancer cells in a manner distinguishing healthy from cancer cells. We report studies on the effect of small-molecule active pharmaceutical ingredients (APIs) of human cancer therapeutics on the catalytic activity of AspH using a high-throughput mass spectrometry (MS)-based inhibition assay. Human B-cell lymphoma-2 (Bcl-2)-protein inhibitors, including the (R)-enantiomer of the natural product gossypol, were observed to efficiently inhibit AspH, as does the antitumor antibiotic bleomycin A. The results may help in the design of AspH inhibitors with the potential of increased selectivity compared to the previously identified Fe(II)-chelating or 2OG-competitive inhibitors. With regard to the clinical use of bleomycin A and of the Bcl-2 inhibitor venetoclax, the results suggest that possible side-effects mediated through the inhibition of AspH and other 2OG oxygenases should be considered.
Inhibition of recombinant human FLAG-tagged HDAC3 expressed in human HEK293F cells co-expressing His6-tagged SMRT (1 to 899 residues) using Fluor-de-lys substrate as substrate incubated for 3 hrs followed by substrate addition and measured after 60 mins by fluorescence based assay
|
Homo sapiens
|
7.3
nM
|
|
Inhibition of class 1 HDAC in human Jurkat 2C4 model of HIV latency assessed as reactivation of HIV latency incubated for 18 to 24 hrs in presence of 0.1 % heat inactivated NHS by Steady-Glo luciferase assay
|
Homo sapiens
|
470.0
nM
|
|
Inhibition of class 1 HDAC in human Jurkat 2C4 model of HIV latency assessed as reactivation of HIV latency incubated for 18 to 24 hrs in presence of 5% heat inactivated NHS by Steady-Glo luciferase assay
|
Homo sapiens
|
620.0
nM
|
|