Journal : Bioorg. Med. Chem.
Title : Discovery of subtype selective muscarinic receptor antagonists as alternatives to atropine using in silico pharmacophore modeling and virtual screening methods.
Year : 2013
Volume : 21
Issue : 9
First Page : 2651
Last Page : 2662
Authors : Bhattacharjee AK, Pomponio JW, Evans SA, Pervitsky D, Gordon RK.
Abstract : Muscarinic acetylcholine receptors (mAChRs) have five known subtypes which are widely distributed in both the peripheral and central nervous system for regulation of a variety of cholinergic functions. Atropine is a well known muscarinic subtype non-specific antagonist that competitively inhibits acetylcholine (ACh) at postganglionic muscarinic sites. Atropine is used to treat organophosphate (OP) poisoning and resulting seizures in the warfighter because it competitively inhibits acetylcholine (ACh) at the muscarinic cholinergic receptors. ACh accumulates due to OP inhibition of acetylcholinesterase (AChE), the enzyme that hydrolyzes ACh. However, atropine produces several unwanted side-effects including dilated pupils, blurred vision, light sensitivity, and dry mouth. To overcome these side-effects, our goal was to find an alternative to atropine that emphasizes M1 (seizure prevention) antagonism but has minimum M2 (cardiac) and M3 (e.g., eye) antagonism so that an effective less toxic medical countermeasure may be developed to protect the warfighter against OP and other chemical warfare agents (CWAs). We adopted an in silico pharmacophore modeling strategy to develop features that are characteristics of known M1 subtype-selective compounds and used the model to identify several antagonists by screening an in-house (WRAIR-CIS) compound database. The generated model for the M1 selectivity was found to contain two hydrogen bond acceptors, one aliphatic hydrophobic, and one ring aromatic feature distributed in a 3D space. From an initial identification of about five hundred compounds, 173 compounds were selected through principal component and cluster analyses and in silico ADME/Toxicity evaluations. Next, these selected compounds were evaluated in a subtype-selective in vitro radioligand binding assay. Twenty eight of the compounds showed antimuscarinic activity. Nine compounds showed specificity for M1 receptors and low specificity for M3 receptors. The pK(i) values of the compounds range from 4.5 to 8.5 nM in comparison to a value of 8.7 nM for atropine. 2-(diethylamino)ethyl 2,2-diphenylpropanoate (ZW62841) was found have the best desired selectivity. None of the newly found compounds were previously reported to exhibit antimuscarinic specificity. Both theoretical and experimental results are presented.